A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP). Results showed that the composites obtained through melt processing methods presented similar thermal stability and improved (nano)mechanical properties compared to 25-30 wt.% G-reinforced PP composites (PP-25G/PP-30G). Specifically, the impact strength and surface hardness were greatly improved. The addition of 20 wt.% E led to a 25-39% increase in impact strength and surface elasticity, while the addition of 6.5 wt.% C led to a 16% increase in surface hardness. The composite based on 25 wt.% G, 6.5 wt.% C, and 20 wt.% E presented the best-balanced properties (8-17% increase in impact strength, 38-41% increase in axial strain, and 35% increase in surface hardness) compared with PP-30G/PP-25G. Structural and morphological analysis confirmed the presence of a strong interaction between the components that make the composites. Based on these results, the PP-G-E-C composites could be presented as a viable material for automotive applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085158PMC
http://dx.doi.org/10.3390/polym16091238DOI Listing

Publication Analysis

Top Keywords

impact strength
12
surface hardness
12
fly ash
8
polypropylene composites
8
long glass
8
strength surface
8
addition wt%
8
wt% led
8
increase impact
8
increase surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!