The preparation of polymer composites that incorporate material of a biogenic nature in the polymer matrices may lead to a reduction in fossil polymer consumption and a potentially higher biodegradability. Furthermore, microalgae biomass as biogenic filler has the advantage of fast growth and high tolerance to different types of culture media with higher production yields than those provided by the biomass of terrestrial crops. On the other hand, algal biomass can be a secondary product in wastewater treatment processes. For the present study, an SBS polymer composite (SBSC) containing 25% (/) copolymer SBS1 (linear copolymer: 30% styrene and 70% butadiene), 50% (/) copolymer SBS2 (linear copolymer: 40% styrene and 60% butadiene), and 25% (/) paraffin oil was prepared. Arthrospira platensis biomass (moisture content 6.0 ± 0.5%) was incorporated into the SBSC in 5, 10, 20, and 30% (/) ratios to obtain polymer composites with spirulina biomass. For the biodegradation studies, the ISO 14855-1:2012(E) standard was applied, with slight changes, as per the specificity of our experiments. The degradation of the studied materials was followed by quantitatively monitoring the CO resulting from the degradation process and captured by absorption in NaOH solution 0.5 mol/L. The structural and morphological changes induced by the industrial composting test on the materials were followed by physical-mechanical, FTIR, SEM, and DSC analysis. The obtained results were compared to create a picture of the material transformation during the composting period. Thus, the collected data indicate two biodegradation processes, of the polymer and the biomass, which take place at the same time at different rates, which influence each other. On the other hand, it is found that the material becomes less ordered, with a sponge-like morphology; the increase in the percentage of biomass leads to an advanced degree of degradation of the material. The FTIR analysis data suggest the possibility of the formation of peptide bonds between the aromatic nuclei in the styrene block and the molecular residues resulting from biomass biodegradation. It seems that in industrial composting conditions, the area of the polystyrene blocks from the SBS-based composite is preferentially transformed in the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085408 | PMC |
http://dx.doi.org/10.3390/polym16091218 | DOI Listing |
Plant Physiol Biochem
January 2025
Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil.
Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.
View Article and Find Full Text PDFPlant Physiol
January 2025
Laboratory of Plant Physiology and Biophysics, Bower Building, and.
Accelerating stomatal kinetics through synthetic optogenetics and mutations that enhance guard cell K+ flux has proven a viable strategy to improve water use efficiency and biomass production. Stomata of the model C4 species Gynandropsis gynandra, a relative of the C3 plant Arabidopsis thaliana, are similarly fast to open and close. We identified and cloned the guard cell rectifying outward K+ channel (GROK) of Gynandropsis and showed that GROK is preferentially expressed in stomatal guard cells.
View Article and Find Full Text PDFPLoS One
January 2025
Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States of America.
The significance of forests in absorbing and storing carbon plays a crucial role in international greenhouse gas policies outlined by the United Nations Framework Convention for Climate Change (UNFCC). This study was conducted in a typical tropical moist forest of Ethiopia to assess its carbon stock, a critical issue in climate policy. The study domain was divided into six strata using elevation criteria.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, China.
ACS Nano
January 2025
Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
Manganese ions (Mn) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn in the subcellular compartments would promote the activation of STING signaling pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!