A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green Synthesis and Characterization of Ginger-Derived Silver Nanoparticles and Evaluation of Their Antioxidant, Antibacterial, and Anticancer Activities. | LitMetric

AI Article Synopsis

  • The study investigates the potential of ginger-derived silver nanoparticles (AgNPs) as a non-toxic, eco-friendly alternative for cancer treatment and bacterial infection prevention.
  • The research focuses on the synthesis of AgNPs using ginger extract, analyzing their properties such as size, stability, and biological effects.
  • Findings indicate that ginger contains various phytochemicals that enhance the synthesis and effectiveness of nanoparticles, showing promising results in cytotoxicity and antimicrobial activity.

Article Abstract

The efficacy, targeting ability, and biocompatibility of plant-based nanoparticles can be exploited in fields such as agriculture and medicine. This study highlights the use of plant-based ginger nanoparticles as an effective and promising strategy against cancer and for the treatment and prevention of bacterial infections and related disorders. Ginger is a well-known spice with significant medicinal value due to its phytochemical constituents including gingerols, shogaols, zingerones, and paradols. The silver nanoparticles (AgNPs) derived from ginger extracts could be an important non-toxic and eco-friendly nanomaterial for widespread use in medicine. In this study, AgNPs were biosynthesized using an ethanolic extract of ginger rhizome and their phytochemical, antioxidant, antibacterial, and cytotoxic properties were evaluated. UV-visible spectral analysis confirmed the formation of spherical AgNPs. FTIR analysis revealed that the NPs were associated with various functional biomolecules that were associated with the NPs during stabilization. The particle size and SEM analyses revealed that the AgNPs were in the size range of 80-100 nm, with a polydispersity index (PDI) of 0.510, and a zeta potential of -17.1 mV. The purity and crystalline nature of the AgNPs were confirmed by X-ray diffraction analysis. The simple and repeatable phyto-fabrication method reported here may be used for scaling up for large-scale production of ginger-derived NPs. A phytochemical analysis of the ginger extract revealed the presence of alkaloids, glycosides, flavonoids, phenolics, tannins, saponins, and terpenoids, which can serve as active biocatalysts and natural stabilizers of metallic NPs. The ginger extracts at low concentrations demonstrated promising cytotoxicity against Vero cell lines with a 50% reduction in cell viability at 0.6-6 μg/mL. When evaluated for biological activity, the AgNPs exhibited significant antioxidant and antibacterial activity on several Gram-positive and Gram-negative bacterial species, including , , , and . This suggests that the AgNPs may be used against multi-drug-resistant bacteria. Ginger-derived AgNPs have a considerable potential for use in the development of broad-spectrum antimicrobial and anticancer medications, and an optimistic perspective for their use in medicine and pharmaceutical industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085059PMC
http://dx.doi.org/10.3390/plants13091255DOI Listing

Publication Analysis

Top Keywords

antioxidant antibacterial
12
silver nanoparticles
8
medicine study
8
agnps
8
ginger extracts
8
ginger
6
green synthesis
4
synthesis characterization
4
characterization ginger-derived
4
ginger-derived silver
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!