The release of cyanide from cyanogenic precursors is the central core of the plant defences based on the cyanogenesis process. Although cyanide is formed as a coproduct of some metabolic routes, its production is mostly due to the degradation of cyanohydrins originating from cyanogenic glycosides in cyanogenic plants and the 4-OH-ICN route in Brassicaceae. Cyanohydrins are then hydrolysed in a reversible reaction generating cyanide, being both, cyanohydrins and cyanide, toxic compounds with potential defensive properties against pests and pathogens. Based on the production of cyanogenic-derived molecules in response to the damage caused by herbivore infestation, in this review, we compile the actual knowledge of plant cyanogenic events in the plant-pest context. Besides the defensive potential, the mode of action, and the targets of the cyanogenic compounds to combat phytophagous insects and acari, special attention has been paid to arthropod responses and the strategies to overcome the impact of cyanogenesis. Physiological and behavioural adaptations, as well as cyanide detoxification by β-cyanoalanine synthases, rhodaneses, and cyanases are common ways of phytophagous arthropods defences against the cyanide produced by plants. Much experimental work is needed to further understand the complexities and specificities of the defence-counter-defence system to be applied in breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085660 | PMC |
http://dx.doi.org/10.3390/plants13091239 | DOI Listing |
Org Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:
The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Post-Graduate and Research Department of Chemistry, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, 641 018, India.
An efficient probe (E)-2-(benzo[d]thiazol-2-yl)-3-(9-ethyl-9 H-carbazol-3-yl)acrylonitrile (CZ-BTZ) for selective fluorescence "turn-on" response with cyanide (CN) ion sensor was developed by simple Knoevenagel condensation of 9-ethyl-9 H carbazole-3-carbaldehyde with 2-(benzo[d]thiazol-2-yl) acetonitrile. The sensing ability of probe CZ-BTZ was tested with different inorganic anions through spectrophotometric and spectrofluorimetric methods. The UV-vis and fluorescence spectral studies show the formation of a new adduct between CZ-BTZ and CN by appearing with a new absorbance band at 350 nm and "turn-on" fluorescence at 535 nm in CHCN: HO (8:2, v/v, pH 7.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Science, Jiangsu Ocean University, Lianyungang 222005, China.
Cyanide often forms as a byproduct during the fermentation process of distilled spirits, and excessive amounts can cause damage to health. Cyanide poisoning is also common in alcoholic beverages and water. Therefore, the cyanide content measurement in water and distilled spirits is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!