This study investigates, through a narrative review, the transformative impact of deep learning (DL) in the field of radiotherapy, particularly in light of the accelerated developments prompted by the COVID-19 pandemic. The proposed approach was based on an umbrella review following a standard narrative checklist and a qualification process. The selection process identified 19 systematic review studies. Through an analysis of current research, the study highlights the revolutionary potential of DL algorithms in optimizing treatment planning, image analysis, and patient outcome prediction in radiotherapy. It underscores the necessity of further exploration into specific research areas to unlock the full capabilities of DL technology. Moreover, the study emphasizes the intricate interplay between digital radiology and radiotherapy, revealing how advancements in one field can significantly influence the other. This interdependence is crucial for addressing complex challenges and advancing the integration of cutting-edge technologies into clinical practice. Collaborative efforts among researchers, clinicians, and regulatory bodies are deemed essential to effectively navigate the evolving landscape of DL in radiotherapy. By fostering interdisciplinary collaborations and conducting thorough investigations, stakeholders can fully leverage the transformative power of DL to enhance patient care and refine therapeutic strategies. Ultimately, this promises to usher in a new era of personalized and optimized radiotherapy treatment for improved patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083654PMC
http://dx.doi.org/10.3390/diagnostics14090939DOI Listing

Publication Analysis

Top Keywords

deep learning
8
umbrella review
8
radiotherapy
6
integration deep
4
learning radiotherapy
4
radiotherapy exploring
4
exploring challenges
4
challenges opportunities
4
opportunities future
4
future directions
4

Similar Publications

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

A comparative analysis of CNNs and LSTMs for ECG-based diagnosis of arrythmia and congestive heart failure.

Comput Methods Biomech Biomed Engin

January 2025

Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

Cardiac arrhythmias are major global health concern and their early detection is critical for diagnosis. This study comprehensively evaluates the effectiveness of CNNs and LSTMs for the classification of cardiac arrhythmias, considering three PhysioNet datasets. ECG records are segmented to accommodate around ∼10s of ECG data.

View Article and Find Full Text PDF

ISLRWR: A network diffusion algorithm for drug-target interactions prediction.

PLoS One

January 2025

Shanghai Xinhao Information Technology Co., Ltd., Shanghai, China.

Machine learning techniques and computer-aided methods are now widely used in the pre-discovery tasks of drug discovery, effectively improving the efficiency of drug development and reducing the workload and cost. In this study, we used multi-source heterogeneous network information to build a network model, learn the network topology through multiple network diffusion algorithms, and obtain compressed low-dimensional feature vectors for predicting drug-target interactions (DTIs). We applied the metropolis-hasting random walk (MHRW) algorithm to improve the performance of the random walk with restart (RWR) algorithm, forming the basis by which the self-loop probability of the current node is removed.

View Article and Find Full Text PDF

Can Focusing on One Deep Learning Architecture Improve Fault Diagnosis Performance?

J Chem Inf Model

January 2025

Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de Janeiro, 225, Marquês de São Vicente Street, Gávea, Rio de Janeiro, RJ 22451-900, Brazil.

Machine learning approaches often involve evaluating a wide range of models due to various available architectures. This standard strategy can lead to a lack of depth in exploring established methods. In this study, we concentrated our efforts on a single deep learning architecture type to assess whether a focused approach could enhance performance in fault diagnosis.

View Article and Find Full Text PDF

Background: With the global population aging and advancements in the medical system, long-term care in healthcare institutions and home settings has become essential for older adults with disabilities. However, the diverse and scattered care requirements of these individuals make developing effective long-term care plans heavily reliant on professional nursing staff, and even experienced caregivers may make mistakes or face confusion during the care plan development process. Consequently, there is a rigid demand for intelligent systems that can recommend comprehensive long-term care plans for older adults with disabilities who have stable clinical conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!