Patlak slope (PS) images have the potential to improve lesion conspicuity compared with standardized uptake value (SUV) images but may be more artifact-prone. This study compared PS versus SUV image quality and hepatic tumor-to-background ratios (TBRs) at matched time points. Early and late SUV and PS images were reconstructed from dynamic positron emission tomography (PET) data. Two independent, blinded readers scored image quality metrics (a four-point Likert scale) and counted tracer-avid lesions. Hepatic lesions and parenchyma were segmented and quantitatively analyzed. Differences were assessed via the Wilcoxon signed-rank test (alpha, 0.05). Forty-three subjects were included. For overall quality and lesion detection, early PS images were significantly inferior to other reconstructions. For overall quality, late PS images (reader 1 [R1]: 3.95, reader 2 [R2]: 3.95) were similar ( > 0.05) to early SUV images (R1: 3.88, R2: 3.84) but slightly superior ( ≤ 0.002) to late SUV images (R1: 2.97, R2: 3.44). For lesion detection, late PS images were slightly inferior to late SUV images (R1 only) but slightly superior to early SUV images (both readers). PS-based TBRs were significantly higher than SUV-based TBRs at the early time point, with opposite findings at the late time point. In conclusion, late PS images are similar to early/late SUV images in image quality and lesion detection; the superiority of SUV versus PS hepatic TBRs is time-dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083784PMC
http://dx.doi.org/10.3390/diagnostics14090883DOI Listing

Publication Analysis

Top Keywords

suv images
28
image quality
16
images
12
late suv
12
lesion detection
12
late images
12
suv
9
patlak slope
8
standardized uptake
8
quality lesion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!