Impact of the Oral Administration of Polystyrene Microplastics on Hepatic Lipid, Glucose, and Amino Acid Metabolism in C57BL/6Korl and C57BL/6-Lep/Korl Mice.

Int J Mol Sci

Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, Laboratory Animal Resources Center, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea.

Published: May 2024

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lep/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084201PMC
http://dx.doi.org/10.3390/ijms25094964DOI Listing

Publication Analysis

Top Keywords

lep mice
20
amino acid
12
adipose tissues
12
mice
10
oral administration
8
lipid glucose
8
acid metabolism
8
c57bl/6-lep/korl mice
8
administration mps
8
alterations lipid
8

Similar Publications

The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota.

View Article and Find Full Text PDF

Effects of Protein on Depression-like Behavior and Gut Microbiota in Stressed Juvenile Mice.

Foods

January 2025

Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand.

protein (Lep) exhibits anti-inflammatory effects, but its antidepressant activity is unknown. This study used a 44-day chronic unpredictable mild stress (CUMS) model to determine whether Lep has a beneficial effect through the gut-brain axis in 3-week-old male C57BL/6 mice. Gavaging with Lep solution alleviated the depression-like behavior and anxiety symptoms in CUMS growing mice.

View Article and Find Full Text PDF

Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.

View Article and Find Full Text PDF

Background: Cellular senescence is a key driver of decreased bone formation and osteoporosis. Leptin (LEP) has been implicated in cellular senescence and osteogenic differentiation. The aim of this study was to investigate the mechanisms by which LEP mediates cellular senescence and osteogenic differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Diamond-Blackfan anemia syndrome (DBAS) is a genetic disorder leading to bone marrow failure due to issues with ribosomal protein genes, mainly RPS19.
  • The researchers created an advanced lentiviral vector called SJEFS-S19 aimed at gene therapy for DBAS, addressing challenges in obtaining patient stem cells.
  • Preclinical tests showed that SJEFS-S19 can correct defects in blood cell production and safely generate a healthy mix of blood cell types in mice, indicating its potential for treating DBAS.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!