Human factor IX is activated to factor IXa beta when factor XIa cleaves two peptide bonds, Arg 145-Ala 146 and Arg 180-Val 181, to release an activation peptide. In factor IX Chapel Hill (IXCH), isolated from a hemophilia B patient with a mild bleeding disorder, the arginine 145 residue has been replaced with a histidine. Thus factor IXCH is activated by factor XIa by cleaving only at the Arg 180-Val 181 bond, leaving the activation peptide attached, and resulting in an activated species, factor IXa alpha CH, that, like normal factor IXa alpha, is only 20% as active as factor IXa beta. It is reported that both factor IX and factor IXCH could be activated by trypsin to forms of factor IXa beta and factor IXa beta CH that had clotting activities identical to factor XIa-activated factor IX. Amino-terminal amino acid sequence analysis showed that trypsin cleaved factor IX at the same bonds as did factor XIa; factor IXCH was cleaved at the Arg 180-Val 181 bond, as normal, and was cleaved near the histidine 145, at the Lys 142-Leu 143 bond, releasing a slightly larger activation peptide than from normal factor IXa beta. Metal ions had no effect on the rate of activation of factor IX by trypsin; however, metal ions had a profound effect on the rate at which further incubation with trypsin inactivated factor IXa. Calcium and manganese protected factor IXa from inactivation by trypsin more effectively than magnesium, which was more effective than no metal ion. It is concluded that trypsin can activate normal factor IX and factor IXCH to fully active IXa beta forms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(85)90192-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!