The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of consortium, on the growth and development of herbs- and . The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of and seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of , an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of and food polymers resulted in an increase in flavonoid content in the leaves of both species. The increase in terpenoid content under supplemental light appears to be related to the presence of spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of and : α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, fungi on the synthesis of VOCs with health-promoting properties. The effect of and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084565 | PMC |
http://dx.doi.org/10.3390/ijms25094846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!