Vaccines and the Eye: Current Understanding of the Molecular and Immunological Effects of Vaccination on the Eye.

Int J Mol Sci

Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.

Published: April 2024

Vaccination is a public health cornerstone that protects against numerous infectious diseases. Despite its benefits, immunization implications on ocular health warrant thorough investigation, particularly in the context of vaccine-induced ocular inflammation. This review aimed to elucidate the complex interplay between vaccination and the eye, focusing on the molecular and immunological pathways implicated in vaccine-associated ocular adverse effects. Through an in-depth analysis of recent advancements and the existing literature, we explored various mechanisms of vaccine-induced ocular inflammation, such as direct infection by live attenuated vaccines, immune complex formation, adjuvant-induced autoimmunity, molecular mimicry, hypersensitivity reactions, PEG-induced allergic reactions, Type 1 IFN activation, free extracellular RNA, and specific components. We further examined the specific ocular conditions associated with vaccination, such as uveitis, optic neuritis, and retinitis, and discussed the potential impact of novel vaccines, including those against SARS-CoV-2. This review sheds light on the intricate relationships between vaccination, the immune system, and ocular tissues, offering insights into informed discussions and future research directions aimed at optimizing vaccine safety and ophthalmological care. Our analysis underscores the importance of vigilance and further research to understand and mitigate the ocular side effects of vaccines, thereby ensuring the continued success of vaccination programs, while preserving ocular health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084287PMC
http://dx.doi.org/10.3390/ijms25094755DOI Listing

Publication Analysis

Top Keywords

molecular immunological
8
vaccination eye
8
ocular
8
ocular health
8
vaccine-induced ocular
8
ocular inflammation
8
vaccination
6
vaccines
4
vaccines eye
4
eye current
4

Similar Publications

Background: The few reported patients with pathogenic IRF8 variants have manifested 2 distinct phenotypes: (1) an autosomal recessive severe immunodeficiency with significant neutrophilia and absence of or significant decrease in monocytes and dendritic cells and (2) a dominant-negative form with only a decrease in conventional type 2 dendritic cells (cDC2s) and susceptibility to mycobacterial disease.

Objectives: Genetic testing of a child with persistent EBV viremia identified a novel IRF8 variant: c.1279dupT (p.

View Article and Find Full Text PDF

Rationale: Quantifying functional small airways disease (fSAD) requires additional expiratory computed tomography (CT) scan, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scan at total lung capacity (TLC) alone (fSAD).

Objectives: To evaluate an AI model for estimating fSAD, compare it with dual-volume parametric response mapping fSAD (fSAD), and assess its clinical associations and repeatability in chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Immunosenescence, age-related immune dysregulation, reduces immunity upon vaccinations and infections. Cytomegalovirus (CMV) infection results in declining naïve (T) and increasing terminally differentiated (T) T cell populations, further aggravating immune aging. Both immunosenescence and CMV have been speculated to hamper the formation of protective T-cell immunity against novel or emerging pathogens.

View Article and Find Full Text PDF

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Highlights from the breakout session: transcriptomic approaches to the study of systemic vasculitis.

Rheumatology (Oxford)

March 2025

Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.

The search for targeted therapies and biomarkers for immune-mediated systemic vasculitis requires detailed understanding of molecular pathogenesis. Whilst candidate approaches have identified new opportunities for drug repurposing, they also miss novel approaches for targeting critical immunological or stromal pathways. On the other hand, bulk transcriptional profiling may fail to capture differences in cellular composition and, depending on the cell source profiled, miss important changes within inflamed vascular tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!