Longjing tea is favored by consumers due to its refreshing and delicate aroma, as well as its fresh and sweet flavor. In order to study the processing technology of Longjing tea with 'Baiye 1' tea varieties, solid phase microextraction and gas chromatography-mass spectrometry were used to analyze the volatile components of Longjing tea in different process stages. The results revealed the identification of 275 aroma metabolites in the processing samples of Longjing tea. The sensory evaluation and principal component analysis revealed that the leaves of fresh (XY) and spreading (TF) were different from the leaves of first panning (YQ), second panning (EQ), final panning (HG), and fragrance enhancing (TX). The relative contents of geraniol (1199.95 and 1134.51), linalool (745.93 and 793.98), methyl salicylate (485.22 and 314.67), phenylethyl alcohol (280.14 and 393.98), 2-methylfuran (872.28 and 517.96), 2-butenal (56.01 and 154.60), and 2-hexenal (46.22 and 42.24), refreshing and floral substances in the XY and TF stages, were higher than other stages. The aroma contents of 2-methylfuran, furfural, 2-methyl-1-penten-3-one, 3-hexen-2-one, dodecane, hexanoyl hexanoate, 2,5-dimethyl-pyrazine, and methyl-pyrazine were found to be significantly positively correlated with the intensity of chestnut aroma. In conclusion, this study contributes to a better understanding of the composition and formation mechanism of chestnut-like aroma and provides new insights into the processing technology to improve the quality of albino green tea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083364PMC
http://dx.doi.org/10.3390/foods13091338DOI Listing

Publication Analysis

Top Keywords

longjing tea
20
processing technology
12
technology longjing
8
tea 'baiye
8
tea
7
aroma
6
longjing
5
processing
4
'baiye based
4
based non-targeted
4

Similar Publications

Volatile terpenoids are major substances responsible for the floral and fruity scents of teas. However, little is known about the regulatory mechanisms of terpenoid biosynthesis pathways in tea plants. 'Zhenfeng Yesheng tea' (ZFYS), a distinctive tea tree germplasm resource in Guizhou province, is known for its unique flavor characterized by a mellow taste and a floral aroma.

View Article and Find Full Text PDF

Insights into potential flavor-active peptides and taste-related compounds in Longjing teas: A comparative study of 'Longjing 43' and 'Qunti' cultivars.

Food Chem

January 2025

Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Electronic address:

Article Synopsis
  • Longjing tea is notable for its rich umami flavor, but the complex chemical interactions that contribute to this taste are not fully understood.
  • The study analyzed taste components in two types of Longjing tea: 'Longjing 43' (LJ43) and 'Qunti' (QT), discovering 865 water-soluble peptides in QT and 497 in LJ43, with 44 identified as contributing to umami flavor.
  • Findings showed that LJ43 had higher levels of theanine and glutamine than QT, while both varieties contained similar levels of flavan-3-ols, indicating that different chemical compounds and their interactions play a critical role in defining the flavor profile of Longjing tea.
View Article and Find Full Text PDF

Impact of utilization of oxygen scavenger on aroma quality of Longjing tea during storage at elevated temperature.

Food Chem X

January 2025

Tea Research Institute, College of Agriculture and Biotechnolgy, Zhejiang University, Hangzhou 310058, PR China.

The fresh aroma of Longjing tea is vulnerable to unfavorable storage conditions. However, limited research has addressed effective solutions apart from low-temperature storage. This study aimed to investigate the impact of oxygen scavenger on aroma quality of packaged Longjing tea samples at elevated storage temperatures.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv.

View Article and Find Full Text PDF
Article Synopsis
  • * This study utilized hyperspectral imaging (HSI) combined with machine learning to visually evaluate matcha quality, achieving high accuracy in classifying matcha grades (98.10%) and predicting quality with a strong model (R > 0.95).
  • * The approach detected spatial variations in key matcha components like catechins and caffeine, enabling a comprehensive and rapid quality assessment method for various types of matcha.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!