A redox-active complex containing Co(II) connected to a terpyridine (TPY) and dipyrromethene functionalized anion receptor (DPM-AR) was created on a gold electrode surface. This host-guest supramolecular system based on a redox-active layer was used for voltammetric detection of chloride anions in aqueous solutions. The sensing mechanism was based on the changes in the redox activity of the complex observed upon binding of the anion to the receptor. The electron transfer coefficient () and electron transfer rate constant () for the modified gold electrodes were calculated based on Cyclic Voltammetry (CV) experiments results. On the other hand, the sensing abilities were examined using Square Wave Voltammetry (SWV). More importantly, the anion receptor was selective to chloride, resulting in the highest change in Co(II) current intensity and allowing to distinguish chloride, sulfate and bromide. The proposed system displayed the highest sensitivity to Cl with a limit of detection of 0.50 fM. The order of selectivity was: Cl > SO > Br, which was confirmed by the binding constants () and reaction coupling efficiencies ().

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085611PMC
http://dx.doi.org/10.3390/molecules29092102DOI Listing

Publication Analysis

Top Keywords

anion receptor
16
based redox-active
8
redox-active complex
8
functionalized anion
8
gold electrode
8
electron transfer
8
voltammetric sensing
4
chloride
4
sensing chloride
4
based
4

Similar Publications

The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Age-related cataracts (ARCs) are associated with increased oxidative stress and cellular senescence. Our objective is to investigate the function of Sirtuin 1 (SIRT1) within ARCs. In ARCs tissues and HO-treated lens epithelial cells (LECs), the expression levels of SIRT1 were examined.

View Article and Find Full Text PDF

A Coordination Nanosystem Enables Endogenous Ferric Ion-Initiated Multi-Catalysis for Synergistic Tumor-Specific Ferroptosis and Gene Therapy.

Small

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Hybridization Design and High-Throughput Screening of Peptides with Immunomodulatory and Antioxidant Activities.

Int J Mol Sci

January 2025

Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

With the increasing recognition of the role of immunomodulation and oxidative stress in various diseases, designing peptides with both immunomodulatory and antioxidant activities has emerged as a promising therapeutic strategy. In this study, a hybridization design was applied as a powerful method to obtain multifunctional peptides. A total of 40 peptides with potential immunomodulatory and antioxidant activities were designed and screened.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!