This comprehensive review addresses the need for sustainable and efficient energy storage technologies against escalating global energy demand and environmental concerns. It explores the innovative utilization of waste materials from oil refineries and coal processing industries as precursors for carbon-based electrodes in next-generation energy storage systems, including batteries and supercapacitors. These waste-derived carbon materials, such as semi-coke, coal gasification fine ash, coal tar pitch, petroleum coke, and petroleum vacuum residue, offer a promising alternative to conventional electrode materials. They present an optimal balance of high carbon content and enhanced electrochemical properties while promoting environmental sustainability through effectively repurposing waste materials from coal and hydrocarbon industries. This review systematically examines recent advancements in fabricating and applying waste-derived carbon-based electrodes. It delves into the methodologies for converting industrial by-products into high-quality carbon electrodes, with a particular emphasis on carbonization and activation processes tailored to enhance the electrochemical performance of the derived materials. Key findings indicate that while higher carbonization temperatures may impede the development of a porous structure, using KOH as an activating agent has proven effective in developing mesoporous structures conducive to ion transport and storage. Moreover, incorporating heteroatom doping (with elements such as sulfur, potassium, and nitrogen) has shown promise in enhancing surface interactions and facilitating the diffusion process through increased availability of active sites, thereby demonstrating the potential for improved storage capabilities. The electrochemical performance of these waste-derived carbon materials is evaluated across various configurations and electrolytes. Challenges and future directions are identified, highlighting the need for a deeper understanding of the microstructural characteristics that influence electrochemical performance and advocating for interdisciplinary research to achieve precise control over material properties. This review contributes to advancing electrode material technology and promotes environmental sustainability by repurposing industrial waste into valuable resources for energy storage. It underscores the potential of waste-derived carbon materials in sustainably meeting global energy storage demands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085522 | PMC |
http://dx.doi.org/10.3390/molecules29092081 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFSci Rep
January 2025
Electronics and Communication Engineering Dept. Faculty of Engineering, Horus University, New Damietta, Egypt.
Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, PR China. Electronic address:
Humidity-responsive actuators (HRA) have garnered significant interest across various domains. Since 2020, MXene have been extensively studied for their potential in HRA, demonstrating remarkable performance. Thus far, more than 70 MXene materials have been found.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!