An efficient palladium-catalyzed carbonylation of aryl fluorosulfates with aryl formates for the facile synthesis of esters was developed. The cross-coupling reactions proceeded effectively in the presence of a palladium catalyst, phosphine ligand, and triethylamine in DMF to produce the corresponding esters in moderate to good yields. Of note, functionalities or substituents, such as nitro, cyano, methoxycarbonyl, trifluoromethyl, methylsulfonyl, trifluoromethoxy, fluoro, chloro, bromo, methyl, methoxy, ,-dimethyl, and [1,3]dioxolyl, were well-tolerated in the reactions, which could be kept for late-stage modification. The reactions employing readily available and relatively robust aryl fluorosulfates as coupling electrophiles could potentially serve as an attractive alternative to traditional cross-couplings with the use of aryl halides and pseudohalides as substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085239 | PMC |
http://dx.doi.org/10.3390/molecules29091991 | DOI Listing |
Org Biomol Chem
January 2025
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
A variety of α-arylated sulfoxonium ylides could be facilely synthesized in modest to high yields through α-arylation of sulfoxonium ylides with aryl fluorosulfates C-O bond functionalization under palladium catalysis. Reactions using readily available and bench-stable aryl fluorosulfates as effective and appealing arylating agents showed both good substrate scope and broad functionality tolerance. Important functional groups such as nitro, cyano, formyl, acetyl, methoxycarbonyl, trifluoromethoxy, fluoro, and chloro embedded in substrates remained intact during the course of the reaction, and could be subjected to downstream modification.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.
An organocatalytic method for the SuFEx click reaction of gaseous SOF is described. Different organic bases such as DBU, TBD, triethylamine and Hünig's base can efficiently catalyze the SuFEx of SOF with various phenols to produce aryl fluorosulfates in 61-97% yields. Under the same conditions, pyridone, pyrazolone and amines can also react with SOF to afford the corresponding heteroaryl fluorosulfates or sulfamoyl fluorides in good yields.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Pathology, School of Medicine, Stanford University, California 94305, United States.
J Med Chem
November 2024
Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States.
Covalent drugs provide pharmacodynamic and pharmacokinetic advantages over reversible agents. However, covalent strategies have been developed mostly to target cysteine (Cys) residues, which are rarely found in binding sites. Among other nucleophilic residues that could be in principle used for the design of covalent drugs, histidine (His) has not been given proper attention despite being in principle an attractive residue to pursue but underexplored.
View Article and Find Full Text PDFJ Org Chem
September 2024
Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!