The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially , showing 67.2% inhibition at 3% extract concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085311 | PMC |
http://dx.doi.org/10.3390/molecules29091935 | DOI Listing |
Life (Basel)
December 2024
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
Fungi and soil bacteria are vital for organic matter decomposition and biogeochemical cycles, but excessive synthetic fertilizer use contributes to soil degradation and loss of biodiversity. Despite this, about 97% of soil microorganisms are unculturable, making them difficult to study. Metagenomics offers a solution, enabling the direct extraction of DNA from soil to uncover microbial diversity and functions.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biotechnology, University of Verona, 37134 Verona, Italy.
Olive phenolic compounds like hydroxytyrosol (OH-Tyr), tyrosol (Tyr), and their precursors have different health-promoting properties, mainly based on their strong antioxidant capacity. However, their presence in extra-virgin olive oil (EVOO) is scarce since they are primarily contained in the by-products of oil production, such as olive pomace (OP). The aim of this work was to extract and encapsulate OP phenolic compounds into chitosan-tripolyphosphate nanoparticles (NPs) using an ionotropic gelation lyophilization approach to increase their resistance to environmental and chemical stress.
View Article and Find Full Text PDFChemosphere
January 2025
Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech Morocco. Electronic address:
Molecules
December 2024
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy.
A multi-analytical approach was used to comprehensively characterize the acid-base, thermal, and surface properties of agri-food processing wastes (i.e., original and pre-treated bergamot, grape and olive pomaces).
View Article and Find Full Text PDFACS Omega
December 2024
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran.
In our study, we aimed to use olive pomace, food industry waste, as biomass to produce biochar nanoparticles. The surface of the biochar was functionalized with the l-histidine ligand, and then cupric acetate was added to prepare Cu-l-histidine@biochar as a final catalyst for the chemo- and homoselective synthesis of amide and aniline derivatives. To characterize the novel catalyst, we employed various techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!