This study investigated the interfacial reactions between n-type Bi(Te,Se) thermoelectric material, characterized by a highly-oriented (110) plane, and pure Sn and Sn-3.0Ag-0.5Cu (wt.%) solders, respectively. At 250 °C, the liquid-state Sn/Bi(Te,Se) reactions resulted in the formation of both SnTe and BiTe phases, with Bi-rich particles dispersed within the SnTe phase. The growth of the SnTe phase exhibited diffusion-controlled parabolic behavior over time. In contrast, the growth rate was considerably slower compared to that observed with p-type (Bi,Sb)Te. Solid-state Sn/Bi(Te,Se) reactions conducted between 160 °C and 200 °C exhibited similar interfacial microstructures. The SnTe phase remained the primary reaction product, embedded with tiny Bi-rich particles, revealing a diffusion-controlled growth. However, the BiTe layer had no significant growth. Further investigation into growth kinetics of intermetallic compounds and microstructural evolution was conducted to elucidate the reaction mechanism. The slower growth rates in Bi(Te,Se), compared to the reactions with (Bi,Sb)Te, could be attributed to the strong suppression effect of Se on SnTe growth. Additionally, the interfacial reactions of Bi(Te,Se) with Sn-3.0Ag-0.5Cu were also examined, showing similar growth behavior to those observed with Sn solder. Notably, compared with Ag, Cu tends to diffuse towards the interfacial reaction phases, resulting in a high Cu solubility within the SnTe phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085345PMC
http://dx.doi.org/10.3390/ma17092158DOI Listing

Publication Analysis

Top Keywords

snte phase
16
interfacial reactions
12
n-type bitese
8
bitese thermoelectric
8
thermoelectric material
8
sn/bitese reactions
8
bi-rich particles
8
growth
8
snte
6
interfacial
5

Similar Publications

The synthesis of new hybrid halide materials is attracting increasing research interest due to their potential optoelectronic applications. However, general design principles that explain and predict their properties are still limited. In this work, we attempted to reveal the role of intermolecular interactions on the optical properties in a series of hybrid halides with an (EtNH)SnTeCl ( = 1-4) composition.

View Article and Find Full Text PDF
Article Synopsis
  • Engineering electronic band structures through doping is essential for enhancing thermoelectric performance in materials.
  • The study reveals that the Sn-s states in SnTe significantly impact the density of states at the valence band's top, influencing band structure tuning.
  • A design approach is presented, identifying Al as an effective dopant that, combined with Sb and AgBiTe, leads to a record high average ZT of 1.15 across a temperature range of 300 to 873 K.
View Article and Find Full Text PDF

A lot of experimental studies are conducted on theoretically predicted thermoelectric 2D materials. Such materials can pave the way for charging ultra-thin electronic devices, self-charging wearable devices, and medical implants. This study systematically explores the thermoelectric attributes of bulk and 2D nanostructured Tin Telluride (SnTe), employing experimental investigations and theoretical analyses based on semiclassical Boltzmann transport theory.

View Article and Find Full Text PDF
Article Synopsis
  • - We developed pentagonal PbSnTe nanowires (NWs) with a specific orientation using advanced growth methods and explored their structural stability across various phases through computational models.
  • - Our findings showcase that the combination of ionic and covalent bonding leads to the preferential formation of these pentagonal structures in tellurides compared to selenides, along with unique electronic properties.
  • - The innovative design of these NWs features a metallic core that connects different electronic bands, differing between various boundaries, potentially paving the way for novel applications in higher-order topology and fractional charge phenomena.
View Article and Find Full Text PDF

This study investigated the interfacial reactions between n-type Bi(Te,Se) thermoelectric material, characterized by a highly-oriented (110) plane, and pure Sn and Sn-3.0Ag-0.5Cu (wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!