A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microstructural Evolution and Failure in Fibrous Network Materials: Failure Mode Transition from the Competition between Bond and Fiber. | LitMetric

For the complex structure of fibrous network materials, it is a challenge to analyze the network strength and deformation mechanism. Here, we identify a failure mode transition within the network material comprising brittle fibers and bonds, which is related to the strength ratio of the bond to the fiber. A failure criterion for this type of fibrous network is proposed to quantitatively characterize this transition between bond damage and fiber damage. Additionally, tensile experiments on carbon and ceramic fibrous network materials were conducted, and the experimental results show that the failure modes of these network materials satisfy the theoretical prediction. The relationship between the failure mode, the relative density of network and strength of the components is established based on finite element analysis of the 3D network model. The failure mode transforms from bond damage to fiber damage as increasing of bond strength. According to the transition of the failure modes in the brittle fibrous network, it is possible to tailor the mechanical properties of fibrous network material by balancing the competition between bond and fiber properties, which is significant for optimizing material design and engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084192PMC
http://dx.doi.org/10.3390/ma17092110DOI Listing

Publication Analysis

Top Keywords

fibrous network
24
network materials
16
failure mode
16
bond fiber
12
network
11
failure
8
mode transition
8
competition bond
8
network strength
8
network material
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!