Background: The accurate delineation of ablation zones (AZs) is crucial for assessing radiofrequency ablation (RFA) therapy's efficacy. Manual measurement, the current standard, is subject to variability and potential inaccuracies.

Aim: This study aims to assess the effectiveness of Artificial Intelligence (AI) in automating AZ measurements in ultrasound images and compare its accuracy with manual measurements in ultrasound images.

Methods: An in vitro study was conducted using chicken breast and liver samples subjected to bipolar RFA. Ultrasound images were captured every 15 s, with the AI model Mask2Former trained for AZ segmentation. The measurements were compared across all methods, focusing on short-axis (SA) metrics.

Results: We performed 308 RFA procedures, generating 7275 ultrasound images across liver and chicken breast tissues. Manual and AI measurement comparisons for ablation zone diameters revealed no significant differences, with correlation coefficients exceeding 0.96 in both tissues ( < 0.001). Bland-Altman plots and a Deming regression analysis demonstrated a very close alignment between AI predictions and manual measurements, with the average difference between the two methods being -0.259 and -0.243 mm, for bovine liver and chicken breast tissue, respectively.

Conclusion: The study validates the Mask2Former model as a promising tool for automating AZ measurement in RFA research, offering a significant step towards reducing manual measurement variability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083655PMC
http://dx.doi.org/10.3390/cancers16091700DOI Listing

Publication Analysis

Top Keywords

manual measurement
12
ultrasound images
12
chicken breast
12
ablation zone
8
measurements ultrasound
8
manual measurements
8
liver chicken
8
measurement
5
ultrasound
5
manual
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!