Objectives: To evaluate the performance of machine learning models in predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer using magnetic resonance imaging.

Methods: We searched PubMed, Embase, Cochrane Library, and Web of Science for studies published before March 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the methodological quality of the included studies, random-effects models were used to calculate sensitivity and specificity, I2 values were used for heterogeneity measurements, and subgroup analyses were carried out to detect potential sources of heterogeneity.

Results: A total of 1699 patients from 24 studies were included. For machine learning models in predicting pCR to nCRT, the meta-analysis calculated a pooled area under the curve (AUC) of 0.91 (95% CI, 0.88-0.93), pooled sensitivity of 0.83 (95% CI, 0.74-0.89), and pooled specificity of 0.86 (95% CI, 0.80-0.91). We investigated 6 studies that mainly contributed to heterogeneity. After performing meta-analysis again excluding these 6 studies, the heterogeneity was significantly reduced. In subgroup analysis, the pooled AUC of the deep-learning model was 0.93 and 0.89 for the traditional statistical model; the pooled AUC of studies that used diffusion-weighted imaging (DWI) was 0.90 and 0.92 in studies that did not use DWI; the pooled AUC of studies conducted in China was 0.93, and was 0.83 in studies conducted in other countries.

Conclusions: This systematic study showed that machine learning has promising potential in predicting pCR to nCRT in patients with locally advanced rectal cancer. Compared to traditional machine learning models, although deep-learning-based studies are less predominant and more heterogeneous, they are able to obtain higher AUC.

Advances In Knowledge: Compared to traditional machine learning models, deep-learning-based studies are able to obtain higher AUC, although they are less predominant and more heterogeneous. Together with clinical information, machine learning-based models may bring us closer towards precision medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186567PMC
http://dx.doi.org/10.1093/bjr/tqae098DOI Listing

Publication Analysis

Top Keywords

machine learning
24
learning models
16
rectal cancer
12
studies
12
pooled auc
12
predicting pathological
8
pathological complete
8
complete response
8
neoadjuvant chemoradiotherapy
8
models predicting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!