A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pharmacologic Venous Thromboembolism Prophylaxis in Patients with Nontraumatic Subarachnoid Hemorrhage Requiring an External Ventricular Drain. | LitMetric

Background: Optimal pharmacologic thromboprophylaxis dosing is not well described in patients with subarachnoid hemorrhage (SAH) with an external ventricular drain (EVD). Our patients with SAH with an EVD who receive prophylactic enoxaparin are routinely monitored using timed anti-Xa levels. Our primary study goal was to determine the frequency of venous thromboembolism (VTE) and secondary intracranial hemorrhage (ICH) for this population of patients who received pharmacologic prophylaxis with enoxaparin or unfractionated heparin (UFH).

Methods: A retrospective chart review was performed for all patients with SAH admitted to the neurocritical care unit at Emory University Hospital between 2012 and 2017. All patients with SAH who required an EVD were included.

Results: Of 1,351 patients screened, 868 required an EVD. Of these 868 patients, 627 received enoxaparin, 114 received UFH, and 127 did not receive pharmacologic prophylaxis. VTE occurred in 7.5% of patients in the enoxaparin group, 4.4% in the UFH group (p = 0.32), and 3.2% in the no VTE prophylaxis group (p = 0.08). Secondary ICH occurred in 3.83% of patients in the enoxaparin group, 3.51% in the UFH group (p = 1), and 3.94% in the no VTE prophylaxis group (p = 0.53). As steady-state anti-Xa levels increased from 0.1 units/mL to > 0.3 units/mL, there was a trend toward a lower incidence of VTE. However, no correlation was noted between rising anti-Xa levels and an increased incidence of secondary ICH. When compared, neither enoxaparin nor UFH use was associated with a significantly reduced incidence of VTE or an increased incidence of ICH.

Conclusions: In this retrospective study of patients with nontraumatic SAH with an EVD who received enoxaparin or UFH VTE prophylaxis or no VTE prophylaxis, there was no statistically significant difference in the incidence of VTE or secondary ICH. For patients receiving prophylactic enoxaparin, achieving higher steady-state target anti-Xa levels may be associated with a lower incidence of VTE without increasing the risk of secondary ICH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-024-01993-5DOI Listing

Publication Analysis

Top Keywords

anti-xa levels
16
vte prophylaxis
16
secondary ich
16
incidence vte
16
patients
12
patients sah
12
vte
10
venous thromboembolism
8
patients nontraumatic
8
subarachnoid hemorrhage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!