In this work, we study the efficiency of N, N-dibenzyl-N, N, N, N-tetramethylpropane-1,3-diaminium chloride, as anticorrosion. This compound exhibits potential as a prospective remedy to stop the deterioration of carbon steel caused by corrosion in 1.0 M HCl. The synthesis of this compound is described in a comprehensive manner, and its composition is supported by a range of precise analytical approaches such as elemental analysis, and mass spectroscopy. Based on the findings of the investigation, the synthesized Gemini ionic liquid demonstrates a robust capacity to slow down the rate at which the metal corrodes. The Prepared compound was evaluation by electrochemical and morphology study. Our results revealed that elevating the inhibitor concentration led to an augmentation in inhibition effectiveness, reaching up to 94.8% at 200 ppm of the synthesized compound at 298 K. It is crucial to emphasize that the recently prepared Gemini ionic liquid is consistent with the Langmuir adsorption model and function as a mixed inhibitor, participating in the physio-chemisorption process of adsorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087565 | PMC |
http://dx.doi.org/10.1038/s41598-024-58321-2 | DOI Listing |
J Phys Chem B
January 2025
Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Center of Excellence for Advanced Materials Research, King Abdulaziz University.
In the present study, the mixed micellization behavior of gemini surfactant-1, 5-bis (N-hexadecyl- N, N-dimethylammonium) pentane dibromide (G5) with non-ionic surfactant triton X-100 (TX-100) was investigated in the micellar phase by utilizing the conductometric technique. The deviation of ideal critical micelle concentration (cmc*) from experimental critical micelle concentration (cmc) has been estimated using well-known Clint's theory of mixed micelles. The regular solution approximation was used to determine the interaction parameter (β) and found to be negative.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Applied Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
Surface-active ionic liquids (SAILs) have gained much attention due to their green, stable, and efficient properties. The high costs associated with SAILs have raised concerns in their applications; however, blending with conventional surfactants like sodium dodecyl benzene sulfonate (SDBS) can bring about desired outcomes. Gemini surface-active ionic liquids (GSAILs) have been recognized as more efficient surfactants.
View Article and Find Full Text PDFJ Hazard Mater
October 2024
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China. Electronic address:
Surfactant-enhanced aquifer remediation (SEAR) has effectively removed dense nonaqueous phase liquids (DNAPLs) from the contaminated aquifers. However, restricted by structural defects, typical monomeric surfactants undergo precipitation, high adsorption loss, and poor solubilization in aquifers, resulting in low remediation efficiency. In this study, a novel sugar-based anionic and non-ionic Gemini surfactant (SANG) was designed and synthesized for SEAR.
View Article and Find Full Text PDFACS Omega
May 2024
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838695, Iran.
Blends of newly developed Gemini surface-active ionic liquids (GSAILs) and conventional surfactants offer significant enhancements to the interfacial properties between crude oil and water, providing economic benefits in chemically enhanced oil recovery. In this study, the mixtures of a benzimidazolium cationic GSAIL, [Cbenzim-C-benzimC][Br], and sodium dodecyl benzenesulfonate (SDBS) were successfully utilized for improving crude oil-water interfacial properties. The research revealed synergistic effects of up to 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!