Consensus-building conversation leads to neural alignment.

Nat Commun

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.

Published: May 2024

Conversation is a primary means of social influence, but its effects on brain activity remain unknown. Previous work on conversation and social influence has emphasized public compliance, largely setting private beliefs aside. Here, we show that consensus-building conversation aligns future brain activity within groups, with alignment persisting through novel experiences participants did not discuss. Participants watched ambiguous movie clips during fMRI scanning, then conversed in groups with the goal of coming to a consensus about each clip's narrative. After conversation, participants' brains were scanned while viewing the clips again, along with novel clips from the same movies. Groups that reached consensus showed greater similarity of brain activity after conversation. Participants perceived as having high social status spoke more and signaled disbelief in others, and their groups had unequal turn-taking and lower neural alignment. By contrast, participants with central positions in their real-world social networks encouraged others to speak, facilitating greater group neural alignment. Socially central participants were also more likely to become neurally aligned to others in their groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087652PMC
http://dx.doi.org/10.1038/s41467-023-43253-8DOI Listing

Publication Analysis

Top Keywords

neural alignment
12
brain activity
12
consensus-building conversation
8
social influence
8
conversation
5
groups
5
participants
5
conversation leads
4
leads neural
4
alignment
4

Similar Publications

Spherical harmonics texture extraction for versatile analysis of biological objects.

PLoS Comput Biol

January 2025

European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.

The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.

View Article and Find Full Text PDF

Objective: Detecting and measuring changes in longitudinal fundus imaging is key to monitoring disease progression in chronic ophthalmic diseases, such as glaucoma and macular degeneration. Clinicians assess changes in disease status by either independently reviewing or manually juxtaposing longitudinally acquired color fundus photos (CFPs). Distinguishing variations in image acquisition due to camera orientation, zoom, and exposure from true disease-related changes can be challenging.

View Article and Find Full Text PDF

Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories.

View Article and Find Full Text PDF

In the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) multiplexing is emerging as a critical technique for achieving high data capacity in underwater wireless optical communications (UWOC). Nonetheless, wavefront distortions induced by underwater turbulence compromise the orthogonality of OAM modes. In this paper, we introduce a physics-driven untrained learning approach for adaptive optics that operates independently of extensive amplitude datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!