Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Enhanced-Deep-Super-Resolution (EDSR) model is a state-of-the-art convolutional neural network suitable for improving image spatial resolution. It was previously trained with general-purpose pictures and then, in this work, tested on biomedical magnetic resonance (MR) images, comparing the network outcomes with traditional up-sampling techniques. We explored possible changes in the model response when different MR sequences were analyzed. Tw and Tw MR brain images of 70 human healthy subjects (F:M, 40:30) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) repository were down-sampled and then up-sampled using EDSR model and BiCubic (BC) interpolation. Several reference metrics were used to quantitatively assess the performance of up-sampling operations (RMSE, pSNR, SSIM, and HFEN). Two-dimensional and three-dimensional reconstructions were evaluated. Different brain tissues were analyzed individually. The EDSR model was superior to BC interpolation on the selected metrics, both for two- and three- dimensional reconstructions. The reference metrics showed higher quality of EDSR over BC reconstructions for all the analyzed images, with a significant difference of all the criteria in Tw images and of the perception-based SSIM and HFEN in Tw images. The analysis per tissue highlights differences in EDSR performance related to the gray-level values, showing a relative lack of outperformance in reconstructing hyperintense areas. The EDSR model, trained on general-purpose images, better reconstructs MR Tw and Tw images than BC, without any retraining or fine-tuning. These results highlight the excellent generalization ability of the network and lead to possible applications on other MR measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140654 | PMC |
http://dx.doi.org/10.1523/ENEURO.0458-22.2023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!