A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic segmentation of dura for quantitative analysis of lumbar stenosis: A deep learning study with 518 CT myelograms. | LitMetric

Background: The diagnosis of lumbar spinal stenosis (LSS) can be challenging because radicular pain is not often present in the culprit-level localization. Accurate segmentation and quantitative analysis of the lumbar dura on radiographic images are key to the accurate differential diagnosis of LSS. The aim of this study is to develop an automatic dura-contouring tool for radiographic quantification on computed tomography myelogram (CTM) for patients with LSS.

Methods: A total of 518 CTM cases with or without lumbar stenosis were included in this study. A deep learning (DL) segmentation algorithm 3-dimensional (3D) U-Net was deployed. A total of 210 labeled cases were used to develop the dura-contouring tool, with the ratio of the training, independent testing, and external validation datasets being 150:30:30. The Dice score (DCS) was the primary measure to evaluate the segmentation performance of the 3D U-Net, which was subsequently developed as the dura-contouring tool to segment another unlabeled 308 CTM cases with LSS. Automatic masks of 446 slices on the stenotic levels were then meticulously reviewed and revised by human experts, and the cross-sectional area (CSA) of the dura was compared.

Results: The mean DCS of the 3D U-Net were 0.905 ± 0.080, 0.933 ± 0.018, and 0.928 ± 0.034 in the five-fold cross-validation, the independent testing, and the external validation datasets, respectively. The segmentation performance of the dura-contouring tool was also comparable to that of the second observer (the human expert). With the dura-contouring tool, only 59.0% (263/446) of the automatic masks of the stenotic slices needed to be revised. In the revised cases, there were no significant differences in the dura CSA between automatic masks and corresponding revised masks (p = 0.652). Additionally, a strong correlation of dura CSA was found between the automatic masks and corresponding revised masks (r = 0.805).

Conclusions: A dura-contouring tool was developed that could automatically segment the dural sac on CTM, and it demonstrated high accuracy and generalization ability. Additionally, the dura-contouring tool has the potential to be applied in patients with LSS because it facilitates the quantification of the dural CSA on stenotic slices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244674PMC
http://dx.doi.org/10.1002/acm2.14378DOI Listing

Publication Analysis

Top Keywords

dura-contouring tool
28
automatic masks
16
quantitative analysis
8
analysis lumbar
8
lumbar stenosis
8
deep learning
8
ctm cases
8
independent testing
8
testing external
8
external validation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!