A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating the Energy Efficiency of Popular US Smartphone Health Care Apps: Comparative Analysis Study Toward Sustainable Health and Nutrition Apps Practices. | LitMetric

Background: The emergence of smartphones has sparked a transformation across multiple fields, with health care being one of the most notable due to the advent of mobile health (mHealth) apps. As mHealth apps have gained popularity, there is a need to understand their energy consumption patterns as an integral part of the evolving landscape of health care technologies.

Objective: This study aims to identify the key contributors to elevated energy consumption in mHealth apps and suggest methods for their optimization, addressing a significant void in our comprehension of the energy dynamics at play within mHealth apps.

Methods: Through quantitative comparative analysis of 10 prominent mHealth apps available on Android platforms within the United States, this study examined factors contributing to high energy consumption. The analysis included descriptive statistics, comparative analysis using ANOVA, and regression analysis to examine how certain factors impact energy use and consumption.

Results: Observed energy use variances in mHealth apps stemmed from user interactions, features, and underlying technology. Descriptive analysis revealed variability in app energy consumption (150-310 milliwatt-hours), highlighting the influence of user interaction and app complexity. ANOVA verified these findings, indicating the critical role of engagement and functionality. Regression modeling (energy consumption = β₀ + β₁ × notification frequency + β₂ × GPS use + β₃ × app complexity + ε), with statistically significant P values (notification frequency with a P value of .01, GPS use with a P value of .05, and app complexity with a P value of .03), further quantified these bases' effects on energy use.

Conclusions: The observed differences in the energy consumption of dietary apps reaffirm the need for a multidisciplinary approach to bring together app developers, end users, and health care experts to foster improved energy conservation practice while achieving a balance between sustainable practice and user experience. More research is needed to better understand how to scale-up consumer engagement to achieve sustainable development goal 12 on responsible consumption and production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127174PMC
http://dx.doi.org/10.2196/58311DOI Listing

Publication Analysis

Top Keywords

energy consumption
24
mhealth apps
20
health care
16
comparative analysis
12
app complexity
12
energy
11
apps
8
notification frequency
8
consumption
7
health
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!