Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DB1- and UL4-ssociated actors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-μM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112733 | PMC |
http://dx.doi.org/10.1021/acs.biochem.4c00044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!