This study investigates the use of nanodiamonds (ND) as a promising carrier for enzyme immobilization and compares the effectiveness of immobilized and native enzymes. Three different enzyme types were tested, of which Rhizopus niveus lipase (RNL) exhibited the highest relative activity, up to 350 %. Under optimized conditions (1 h, pH 7.0, 40 °C), the immobilized ND-RNL showed a maximum specific activity of 0.765 U mg, significantly higher than native RNL (0.505 U mg). This study highlights a notable enhancement in immobilized lipase; furthermore, the enzyme can be recycled in the presence of a natural deep eutectic solvent (NADES), retaining 76 % of its initial activity. This aids in preserving the native conformation of the protein throughout the reusability process. A test on brine shrimp revealed that even at low concentrations, ND-RNL had minimal toxicity, indicating its low cytotoxicity. The in silico molecular dynamics simulations performed in this study offer valuable insights into the mechanism of interactions between RNL and ND, demonstrating that RNL immobilization onto NDs enhances its efficiency and stability. All told, these findings highlight the immense potential of ND-immobilized RNL as an excellent candidate for biological applications and showcase the promise of further research in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132245DOI Listing

Publication Analysis

Top Keywords

natural deep
8
deep eutectic
8
rnl
5
nanodiamonds natural
4
eutectic solvents
4
solvents potential
4
potential carriers
4
carriers lipase
4
lipase study
4
study investigates
4

Similar Publications

The latest breakthroughs in information technology and biotechnology have catalyzed a revolutionary shift within the modern healthcare landscape, with notable impacts from artificial intelligence (AI) and deep learning (DL). Particularly noteworthy is the adept application of large language models (LLMs), which enable seamless and efficient communication between scientific researchers and AI systems. These models capitalize on neural network (NN) architectures that demonstrate proficiency in natural language processing, thereby enhancing interactions.

View Article and Find Full Text PDF

Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.

The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice.

View Article and Find Full Text PDF

A Topology-Enhanced Multi-Viewed Contrastive Approach for Molecular Graph Representation Learning and Classification.

Mol Inform

January 2025

Faculty of Information Technology, HUTECH University, 700000, Ho Chi Minh City, Vietnam.

In recent times, graph representation learning has been becoming a hot research topic which has attracted a lot of attention from researchers. Graph embeddings have diverse applications across fields such as information and social network analysis, bioinformatics and cheminformatics, natural language processing (NLP), and recommendation systems. Among the advanced deep learning (DL) based architectures used in graph representation learning, graph neural networks (GNNs) have emerged as the dominant and highly effective framework.

View Article and Find Full Text PDF

Background: Bilateral deep brain stimulation (DBS) of subthalamic nucleus (STN) has demonstrated efficacy for ameliorating medication-refractory isolated dystonia. Nonetheless, the paucity of evidence regarding its long-term impact on quality-of-life (QoL) necessitates further investigation.

Objectives: This study aimed to elucidate the longitudinal effects of chronic STN stimulation on QoL in patients suffering from isolated dystonia.

View Article and Find Full Text PDF

Susceptibility-weighted imaging (SWI) has been widely used in clinical contexts, in which the speed of acquisition is frequently a critical issue. In this study, we aim to test the feasibility of a deep learning (DL)-based reconstruction method for accelerating SWI acquisition in clinical settings. A total of 61 subjects were consecutively enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!