Efficient photodegradation of antibiotics by g-CN and 3D flower-like BiWO perovskite structure: Insights into the preparation, evaluation, and potential mechanism.

Chemosphere

School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China. Electronic address:

Published: July 2024

Antibiotics are emerging organic pollutants that have attracted huge attention owing to their abundant use and associated ecological threats. The aim of this study is to develop and use photocatalysts to degrade antibiotics, including tetracycline (TC), ciprofloxacin (CIP), and amoxicillin (AMOX). Therefore, a novel Z-scheme heterojunction composite of g-CN (gCN) and 3D flower-like BiWO (BW) perovskite structure was designed and developed, namely BiWO/g-CN (BW/gCN), which can degrade low-concentration of antibiotics in aquatic environments under visible light. According to the Density Functional Theory (DFT) calculation and the characterization results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), Scanning electron microscopy - energy spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), this heterojunction was formed in the recombination process. Furthermore, the results of 15 wt%-BW/gCN photocatalytic experiments showed that the photodegradation rates (Rp) of TC, CIP, and AMOX were 92.4%, 90.1% and 82.3%, respectively, with good stability in three-cycle photocatalytic experiments. Finally, the quenching experiment of free radicals showed that the holes (h) and superoxide radicals (·O) play a more important role than the hydroxyl radicals (·OH) in photocatalysis. In addition, a possible antibiotic degradation pathway was hypothesized on the basis of High performance liquid chromatography (HPLC) analysis. In general, we have developed an effective catalyst for photocatalytic degradation of antibiotic pollutants and analyzed its photocatalytic degradation mechanism, which provides new ideas for follow-up research and expands its application in the field of antibiotic composite pollution prevention and control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142286DOI Listing

Publication Analysis

Top Keywords

flower-like biwo
8
biwo perovskite
8
perovskite structure
8
photocatalytic experiments
8
photocatalytic degradation
8
efficient photodegradation
4
antibiotics
4
photodegradation antibiotics
4
antibiotics g-cn
4
g-cn flower-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!