Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
On September 24, 2022, Post-Tropical Hurricane Fiona made landfall in Atlantic Canada and caused unprecedented damages to the coastal communities and ecosystems therein. The aftermath triggered local government and communities in Prince Edward Island (PEI), Canada to rethink current policies and practices for coastal protection in the context of climate change. This historic hazard represents the escalating frequency and intensity of extreme weather events that globally threaten coastal regions, accelerating coastal erosion and endangering communities. This study employs landcover-based detection to assess rapid storm impact of Fiona on coastline of PEI using Sentinel-2 satellite images, to gauge the efficacy of landcover-based detection and quantify storm-induced coastal environmental changes. Our results indicate that, following Fiona, over 51 km coastal land loss due to the erosion at beach foreshore and inundation at tidal flat, and over 11 km sand dune loss mainly on the PEI north shore. This constitutes a 3.5 % loss of coastal land resources within the 1798 km PEI coastal zone. Fiona also caused over 194 km area in coastal buffer zone showed temporal fluid-mud from the eroded sediments of sand dunes, cliffs, and tidal flats, suggesting the significant sediment loss from vertical structures in addition to the direct retreat. The landcover-based method can be regarded as a valuable tool for the storm impacts on coastal environments. Based on the coastal change pattern, more sustainable coastal protection and adaptation measures should be developed, focusing on reducing hydrodynamic intensity and improving erosion capacity, with consideration of the increasing likelihood of more intense and frequent storm events in a warming climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!