Premature ventricular contraction (PVC) is usually eliminated in the earliest activation site based on the conventional electrode of ablation catheter. However, the large size electrode may contain far-field potential. The QDOT MICRO ablation catheter has three micro electrodes with 0.33 mm electrode length, in addition to the conventional electrode with 3.5 mm electrode length. The micro electrodes can reflect only near-field potential. A 78-year-old with symptomatic frequent PVCs underwent catheter ablation. PVC-1 showed good pace-mapping in distal great cardiac vein (GCV). The local bipolar electrograms in the conventional electrode of ablation catheter preceded the PVC-QRS onset by 32 ms in distal GCV and 13 ms in left coronary cusp (LCC), but those in the micro electrodes preceded only by 13 ms both in distal GCV and LCC. PVC-1 was eliminated by radiofrequency (RF) application, not in distal GCV, but in LCC. PVC-2 showed good pace-mapping in LCC. The local bipolar electrograms in both the conventional electrode and the micro electrodes of ablation catheter preceded the PVC-QRS onset by 32 ms in LCC. PVC-2 was eliminated by RF application in LCC. Comparing the local electrograms of micro electrodes and the conventional electrodes may be important for identifying depth of the origin of PVCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361874PMC
http://dx.doi.org/10.1016/j.ipej.2024.05.001DOI Listing

Publication Analysis

Top Keywords

micro electrodes
20
conventional electrode
16
ablation catheter
16
distal gcv
12
premature ventricular
8
electrode ablation
8
electrode length
8
good pace-mapping
8
local bipolar
8
bipolar electrograms
8

Similar Publications

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.

View Article and Find Full Text PDF

An all-vanadium-based lithium-ion full battery is successfully assembled with hierarchical micro-nano yolk-shell structures VO and VO as the cathode and anode, which were obtained through a facile solvothermal method with heat treatment under different atmospheres. When used as the cathode of the lithium-ion battery, the hierarchical micro-nano yolk-shell VO demonstrated higher capacities than bulk VO, commercial LiFePO, and LiNiCoMnO cathodes at various current densities. The all-vanadium-based lithium-ion full battery shows good cycle performance at 0.

View Article and Find Full Text PDF

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!