Statistics of Gaussian polymer chains in harmonic applied fields.

J Phys Condens Matter

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America.

Published: May 2024

The model of an ideal polymer chain in a harmonic applied field has broad applicability in situations involving polymer confinement and deformation due to applied stress. In this work we (1) formulate a general analytical model for a continuous Gaussian chain under a harmonic applied potential and (2) evaluate the statistical mechanics of this model given the potential, obtaining partition functions and moment generating functions (MGFs) that describe the chain configurations. Closed-form expressions for the squared radius of gyration, potential energy, partition function, and MGF for the center of mass are obtained for a general and multidimensional harmonic field. The expressions are compared with results of Monte Carlo simulations of a discrete Gaussian chain as well as results for related systems obtained from the literature. The theory derived here is used to test the applicability of the current model assumptions to relations from the literature describing polymer confinement and deformation in experiment, theory, and simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad4a17DOI Listing

Publication Analysis

Top Keywords

harmonic applied
12
chain harmonic
8
polymer confinement
8
confinement deformation
8
gaussian chain
8
statistics gaussian
4
polymer
4
gaussian polymer
4
polymer chains
4
harmonic
4

Similar Publications

LiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.

View Article and Find Full Text PDF

This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.

View Article and Find Full Text PDF

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.

View Article and Find Full Text PDF

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.

View Article and Find Full Text PDF

Thermally Controlled -site Cation Ordering and Coupled Polarity in Double Perovskite NaLaZrO.

Inorg Chem

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

-site cation ordering in double perovskites is crucially important for their physical properties. In this study, polycrystalline samples of Zr-based double perovskite NaLaZrO were synthesized via high-temperature solid-state reactions, and the influence of the heating temperature and cooling rate on their crystal structures was investigated using synchrotron X-ray diffractometry and optical second harmonic generation. The samples prepared at 1200 °C, followed by slow cooling to room temperature, crystallize in a polar 2 structure, exhibiting partial -site cation ordering, with Na- and La-rich -site layers alternately stacked along the axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!