Existence of density inhomogeneity of liquid Te associated with liquid-liquid phase transition.

J Phys Condens Matter

Faculty of Materials for Energy, Shimane University, Matsue, Shimane 690-8504, Japan.

Published: May 2024

We performed small-angle x-ray scattering measurements of liquid Te using a synchrotron radiation facility and observed maximum scattering intensity near 620 K in the supercooled region (melting temperature 723 K). This indicates that density inhomogeneity exists in liquid Te, and the fact that this temperature coincides with the temperature at which the specific heat, sound velocity, and thermal expansion coefficient reach their maxima means that this density inhomogeneity is the cause of these thermodynamic anomalies. The thermodynamic anomalies in liquid Te had already been shown in the 1980s to be comprehensively explained by the inhomogeneity associated with the continuous liquid-liquid phase transition (LLT), but direct experimental evidence for the existence of the inhomogeneity had not been obtained. The present results, together with those already obtained for mixture systems (Te-Se, Te-Ge), indicate the existence of inhomogeneity associated with LLT in liquid Te systems, and strongly support the model. Recently, similar maximum scattering intensity has also been observed in supercooled liquid water, which exhibits thermodynamic anomalies similar to those of Te, indicating the universality of the inhomogeneous model or LLT scenario to explain the thermodynamics of such 'anomalous liquids'. Further development of the LLT scenario is expected in near future.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad49faDOI Listing

Publication Analysis

Top Keywords

density inhomogeneity
12
thermodynamic anomalies
12
liquid-liquid phase
8
phase transition
8
maximum scattering
8
scattering intensity
8
inhomogeneity associated
8
existence inhomogeneity
8
llt scenario
8
inhomogeneity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!