The increasing concern over pesticide pollution in water bodies underscores the need for effective mitigation strategies to support the transition towards sustainable agriculture. This study assesses the effectiveness of landscape mitigation strategies, specifically vegetative buffer strips, in reducing glyphosate loads at the catchment scale under realistic conditions. Conducted over six years (2014-2019) in a small agricultural region in Belgium, our research involved the analysis of 732 water samples from two monitoring stations, differentiated by baseflow and event-driven sampling, and before (baseline) and after the implementation of mitigation measures. The results indicated a decline in both the number and intensity of point source losses over the years. Additionally, there was a general decrease in load intensity; however, the confluence of varying weather conditions (notably dry years during the mitigation period) and management practices (the introduction of buffer strips) posed challenges for a statistically robust evaluation of each contributing factor. A reduction of loads was measured when comparing mitigation with baseline, although this reduction is not statistically significant. Glyphosate loads during rainfall events correlated with a rainfall index and runoff ratio. Overall, focusing the mitigation strategy on runoff and erosion was a valid approach. Nevertheless, challenges remain, as evidenced by the continuous presence of glyphosate in baseflow conditions, highlighting the complex dynamics of pesticide transport. The study concludes that while progress has been made towards reducing pesticide pollution, the complexity of interacting factors necessitates further research. Future directions should focus on enhancing farmer engagement in mitigation programs and developing experiments with more intense data collection that help to assess underlying dynamics of pesticide pollution and the impact of mitigation strategies in more detail, contributing towards the goal of reducing pesticide pollution in water bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121046DOI Listing

Publication Analysis

Top Keywords

pesticide pollution
16
mitigation strategies
12
pollution water
8
water bodies
8
mitigation
8
buffer strips
8
glyphosate loads
8
dynamics pesticide
8
reducing pesticide
8
pesticide
5

Similar Publications

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by A-3.

J Agric Food Chem

January 2025

Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain A-3 was isolated for the first time which can degrade DIF efficiently.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!