Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.116432 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Nankai University, Colege of Chemistry, CHINA.
Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China; Engineering Technology Research Center of Nuclear Radiation Detection and Application of Jiangxi Province, East China University of Technology, Nanchang 330013, China. Electronic address:
Photocatalytic reduction of uranyl ions (UO) is an environmentally friendly, energy efficient, and highly effective method for uranium-containing wastewater treatment and uranium recovery. Herein, a novel photocatalytic material CH-8 @NNFO-4 with abundant oxygen vacancies was synthesize by growing Ca(OH) on the surface of Fe doped NaNbO in situ. The Ca(OH) synergizes with the oxygen vacancies, creating a microenvironment that narrows the bandgap and extends the light response range.
View Article and Find Full Text PDFMol Genet Genomic Med
November 2024
Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, the Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
Orphanet J Rare Dis
October 2024
Genetics and Prenatal Diagnosis Center, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
NPJ Vaccines
September 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Influenza viruses pose a threat to public health as evidenced by severe morbidity and mortality in humans on a yearly basis. Given the constant changes in the viral glycoproteins owing to antigenic drift, seasonal influenza vaccines need to be updated periodically and effectiveness often drops due to mismatches between vaccine and circulating strains. In addition, seasonal influenza vaccines are not protective against antigenically shifted influenza viruses with pandemic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!