Probing the stability and quality of the cellulose-based Pickering emulsion containing sesamolin-enriched sesame oil by chemometrics-assisted ATR-FTIR spectroscopy.

Food Chem

Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Published: September 2024

This study presents the employment of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection and principal component analysis (PCA) to analyze the stability of a Pickering emulsion stabilized by carboxylated-cellulose nanocrystal (cCNC) comprising sesame oil phases with or without sesamolin. FTIR measurements identified an intermolecular hydrogen bond between the ester group of the triglyceride and the carboxyl group of the cCNC to create the emulsion droplet. The spectral bands from the hydroxyl group vibration (3700-3050 cm), carbonyl (1744 cm), CO groups of the ester triglyceride and cCNC (1160-998 cm) markedly discriminated between stabilized and destabilized emulsions. The PCA of FTIR spectra detected the change of molecular interaction during storage according to creaming, aggregation, and coalescence and changes in physicochemical parameters such as droplet size, refractive index, and zeta potential. Hence, PCA enabled the observation of the destabilization of emulsion in real-time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139555DOI Listing

Publication Analysis

Top Keywords

pickering emulsion
8
sesame oil
8
probing stability
4
stability quality
4
quality cellulose-based
4
cellulose-based pickering
4
emulsion
4
emulsion sesamolin-enriched
4
sesamolin-enriched sesame
4
oil chemometrics-assisted
4

Similar Publications

Stable Pickering emulsions of cinnamaldehyde were formulated using tannic acid-assisted cellulose nanofibers and applied for mango preservation.

Int J Biol Macromol

December 2024

College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:

Recent explorations into cinnamaldehyde (CIN) have identified its potential as a natural preservative, particularly when incorporated into active packaging to enhance the shelf-life of fruits and vegetables. This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions as a novel delivery system for essential oils, demonstrating broad applicability in food preservation strategies. We employ CNF as Pickering stabilizers to effectively emulsify and encapsulate CIN, investigating the influence of tannic acid (TA) concentrations on the stability of these emulsions.

View Article and Find Full Text PDF

Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.

We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.

View Article and Find Full Text PDF

Design and Characterization of Polyvinyl Alcohol/Kappa-Carrageenan Pickering Emulsion Biocomposite Films for Potential Wound Care Applications.

J Biomed Mater Res A

January 2025

Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda, Japan.

This study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.

View Article and Find Full Text PDF

Gliadin/Konjac glucomannan particle-stabilized Pickering emulsion for honokiol encapsulation with enhanced digestion benefits.

Int J Biol Macromol

December 2024

School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Owing to the limited availability of biocompatible, edible and natural emulsifiers, the development of Pickering emulsions applicable to the food industry still confronts challenges. Moreover, Honokiol (HNK), due to its poor stability and susceptibility to oxidation, most of the existing delivery systems are centered on injection administration routes and relatively complex in preparation, posing significant challenges for industrialization. In this research, a Pickering emulsion system stabilized by gliadin and konjac glucomannan composite particles (GKPs) was constructed using the pH cycling method and was employed for the delivery of HNK.

View Article and Find Full Text PDF

Pickering emulsion with tumor vascular destruction and microenvironment modulation for transarterial embolization therapy.

Biomaterials

December 2024

Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210009, China. Electronic address:

In the clinic, Lipiodol chemotherapeutic emulsions remain a main choice for patients diagnosed with hepatocellular carcinoma (HCC) via the mini-invasive transarterial chemoembolization (TACE) therapy. However, the poor stability of conventional Lipiodol chemotherapeutic emulsions would result in the fast drug diffusion and incomplete embolization, inducing systemic toxicity and impairing the efficacy of TACE therapy. Therefore, it is of great importance to construct alternative formulations based on commercial Lipiodol to achieve the improved efficacy and safety of HCC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!