Electric Polarization from a Many-Body Neural Network Ansatz.

Phys Rev Lett

School of Physics, Peking University, Beijing 100871, People's Republic of China.

Published: April 2024

Ab initio calculation of dielectric response with high-accuracy electronic structure methods is a long-standing problem, for which mean-field approaches are widely used and electron correlations are mostly treated via approximated functionals. Here we employ a neural network wave function ansatz combined with quantum Monte Carlo method to incorporate correlations into polarization calculations. On a variety of systems, including isolated atoms, one-dimensional chains, two-dimensional slabs, and three-dimensional cubes, the calculated results outperform conventional density functional theory and are consistent with the most accurate calculations and experimental data. Furthermore, we have studied the out-of-plane dielectric constant of bilayer graphene using our method and reestablished its thickness dependence. Overall, this approach provides a powerful tool to accurately describe electron correlation in the modern theory of polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.176401DOI Listing

Publication Analysis

Top Keywords

neural network
8
electric polarization
4
polarization many-body
4
many-body neural
4
network ansatz
4
ansatz ab initio
4
ab initio calculation
4
calculation dielectric
4
dielectric response
4
response high-accuracy
4

Similar Publications

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Rising computed tomography (CT) workloads require more efficient image interpretation methods. Digitally reconstructed radiographs (DRRs), generated from CT data, may enhance workflow efficiency by enabling faster radiological assessments. Various techniques exist for generating DRRs.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.

View Article and Find Full Text PDF

The trajectory of crime: Integrating mouse-tracking into concealed memory detection.

Behav Res Methods

January 2025

Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, 999078, Macau, China.

The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!