Despite their successful implementation in the COVID-19 vaccines, lipid nanoparticles (LNPs) still face a central limitation in the delivery of mRNA payloads: endosomal trapping. Improving upon this inefficiency could afford improved drug delivery systems, paving the way toward safer and more effective mRNA-based medicines. Here, we present olyphenolic nnopatil patforms (PARCELs) as effective mRNA delivery systems. In brief, our investigation begins with a computationally guided structural analysis of 1825 discrete polyphenolic structural data points across 73 diverse small molecule polyphenols and 25 molecular parameters. We then generate structurally diverse PARCELs, evaluating their mechanism and activity, ultimately highlighting the superior endosomal escape properties of PARCELs relative to analogous LNPs. Finally, we examine the biodistribution, protein expression, and therapeutic efficacy of PARCELs in mice. In undertaking this approach, the goal of this study is to establish PARCELs as viable delivery platforms for safe and effective mRNA delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218425 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.4c01235 | DOI Listing |
Neuro Oncol
January 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University of M.P.), Sagar, Madhya Pradesh, 470003, India.
In recent years, there have been notable strides in developing mRNA vaccines, resulting in the creation of potent immunizations against diverse diseases. This review examines the most recent advancements in this field, focusing on their implications for future vaccine development. The pursuit of heightened vaccine efficacy is investigated through cutting-edge methods in adjuvant selection, delivery system optimization, and antigen selection.
View Article and Find Full Text PDFMol Ther
January 2025
Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:
Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!