A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An improved attention module based on nnU-Net for segmenting primary central nervous system lymphoma (PCNSL) in MRI images1. | LitMetric

Background: Accurate volumetric segmentation of primary central nervous system lymphoma (PCNSL) is essential for assessing and monitoring the tumor before radiotherapy and the treatment planning. The tedious manual segmentation leads to interindividual and intraindividual differences, while existing automatic segmentation methods cause under-segmentation of PCNSL due to the complex and multifaceted nature of the tumor.

Objective: To address the challenges of small size, diffused distribution, poor inter-layer continuity on the same axis, and tendency for over-segmentation in brain MRI PCNSL segmentation, we propose an improved attention module based on nnUNet for automated segmentation.

Methods: We collected 114 T1 MRI images of patients in the Huashan Hospital, Shanghai. Then randomly split the total of 114 cases into 5 distinct training and test sets for a 5-fold cross-validation. To efficiently and accurately delineate the PCNSL, we proposed an improved attention module based on nnU-Net with 3D convolutions, batch normalization, and residual attention (res-attention) to learn the tumor region information. Additionally, multi-scale dilated convolution kernels with different dilation rates were integrated to broaden the receptive field. We further used attentional feature fusion with 3D convolutions (AFF3D) to fuse the feature maps generated by multi-scale dilated convolution kernels to reduce under-segmentation.

Results: Compared to existing methods, our attention module improves the ability to distinguish diffuse and edge enhanced types of tumors; and the broadened receptive field captures tumor features of various scales and shapes more effectively, achieving a 0.9349 Dice Similarity Coefficient (DSC).

Conclusions: Quantitative results demonstrate the effectiveness of the proposed method in segmenting the PCNSL. To our knowledge, this is the first study to introduce attention modules into deep learning for segmenting PCNSL based on brain magnetic resonance imaging (MRI), promoting the localization of PCNSL before radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-240016DOI Listing

Publication Analysis

Top Keywords

attention module
16
improved attention
12
module based
12
based nnu-net
8
primary central
8
central nervous
8
nervous system
8
system lymphoma
8
pcnsl
8
lymphoma pcnsl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!