In this study, we reported a selective impedimetric biosensor for the detection of A29 which is the target protein of the monkeypox virus (MPXV). The working principle of the biosensor relies on the interaction mechanism between A29, which is an internal membrane protein of MPXV, and the heparan sulfate receptor. For this purpose, after immobilizing heparan sulfate onto the gold screen-printed electrode surface, its interaction with A29 protein was monitored using electrochemical impedance spectroscopy. After the optimization of experimental parameters, the analytical characteristics of the developed MPVX immunosensor were examined. The developed immunosensor exhibited a linear detection range between 2.0 and 50 ng mL, with a detection limit of 2.08 ng mL and a quantification limit of 6.28 ng mL. Furthermore, a relative standard deviation value of 2.82% was determined for 25 ng mL. Apart from that, sample application studies were also performed with the standard addition of A29 protein to 1:10 diluted real serum samples that were taken from healthy individuals, and very good recovery values were obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140668PMC
http://dx.doi.org/10.1021/acs.analchem.3c05182DOI Listing

Publication Analysis

Top Keywords

monkeypox virus
8
heparan sulfate
8
a29 protein
8
electrochemical immunoassay
4
immunoassay platform
4
platform human
4
human monkeypox
4
detection
4
virus detection
4
detection study
4

Similar Publications

In response to the pressing need for the detection of Monkeypox caused by the Monkeypox virus (MPXV), this study introduces the Enhanced Spatial-Awareness Capsule Network (ESACN), a Capsule Network architecture designed for the precise multi-class classification of dermatological images. Addressing the shortcomings of traditional Machine Learning and Deep Learning models, our ESACN model utilizes the dynamic routing and spatial hierarchy capabilities of CapsNets to differentiate complex patterns such as those seen in monkeypox, chickenpox, measles, and normal skin presentations. CapsNets' inherent ability to recognize and process crucial spatial relationships within images outperforms conventional CNNs, particularly in tasks that require the distinction of visually similar classes.

View Article and Find Full Text PDF

Antiviral activity of tecovirimat against monkeypox virus clades 1a, 1b, 2a, and 2b.

Lancet Infect Dis

January 2025

Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris 75015, France; Vaccine Research Institute, Paris, France. Electronic address:

View Article and Find Full Text PDF

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Resonance SERS probe based on the bifunctional molecule IR808 combined with SA test strips for highly sensitive detection of monkeypox virus.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China. Electronic address:

As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed.

View Article and Find Full Text PDF

The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!