In recent years, several deep learning-based methods have been proposed for predicting peptide fragment intensities. This study aims to provide a comprehensive assessment of six such methods, namely Prosit, DeepMass:Prism, pDeep3, AlphaPeptDeep, Prosit Transformer, and the method proposed by Guan et al. To this end, we evaluated the accuracy of the predicted intensity profiles for close to 1.7 million precursors (including both tryptic and HLA peptides) corresponding to more than 18 million experimental spectra procured from 40 independent submissions to the PRIDE repository that were acquired for different species using a variety of instruments and different dissociation types/energies. Specifically, for each method, distributions of similarity (measured by Pearson's correlation and normalized angle) between the predicted and the corresponding experimental and fragment intensities were generated. These distributions were used to ascertain the prediction accuracy and rank the prediction methods for particular types of experimental conditions. The effect of variables like precursor charge, length, and collision energy on the prediction accuracy was also investigated. In addition to prediction accuracy, the methods were evaluated in terms of prediction speed. The systematic assessment of these six methods may help in choosing the right method for MS/MS spectra prediction for particular needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165591 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.3c00857 | DOI Listing |
Eur J Breast Health
January 2025
Department of Surgery, Salmaniya Medical Complex, Government Hospitals, Manama, Bahrain.
Objective: Neoadjuvant chemotherapy (NACT) has been the primary treatment method for patients with local advanced breast cancer. A pathological complete response (pCR) to therapy correlates with better overall disease prognosis. Magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) have been widely used to monitor the response to NACT in breast cancer.
View Article and Find Full Text PDFOrthod Craniofac Res
January 2025
UFR Odontologie, Université Paris Cité, Paris, France.
Objective: To assess the accuracy of three commercially available and one open-source deep learning (DL) solutions for automatic tooth segmentation in cone beam computed tomography (CBCT) images of patients with multiple dental impactions.
Materials And Methods: Twenty patients (20 CBCT scans) were selected from a retrospective cohort of individuals with multiple dental impactions. For each CBCT scan, one reference segmentation and four DL segmentations of the maxillary and mandibular teeth were obtained.
Eur J Breast Health
January 2025
Department of Biomedical Engineering, Yeditepe University Faculty of Engineering, İstanbul, Turkey.
Objective: To investigate integrating an artificial intelligence (AI) system into diagnostic breast ultrasound (US) for improved performance.
Materials And Methods: Seventy suspicious breast mass lesions (53 malignant and 17 benign) from seventy women who underwent diagnostic breast US complemented with shear wave elastography, US-guided core needle biopsy and verified histopathology were enrolled. Two radiologists, one with 15 years of experience and the other with one year of experience, evaluated the images for breast imaging-reporting and data system (BI-RADS) scoring.
J Drug Target
January 2025
Sunirmal Bhattacharjee, Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura, India.
A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!