Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Oral epithelial dysplasia (OED) is a precancerous histopathological finding which is considered the most important prognostic indicator for determining the risk of malignant transformation into oral squamous cell carcinoma (OSCC). The gold standard for diagnosis and grading of OED is through histopathological examination, which is subject to inter- and intra-observer variability, impacting accurate diagnosis and prognosis. The aim of this review article is to examine the current advances in digital pathology for artificial intelligence (AI) applications used for OED diagnosis.
Materials And Methods: We included studies that used AI for diagnosis, grading, or prognosis of OED on histopathology images or intraoral clinical images. Studies utilizing imaging modalities other than routine light microscopy (e.g., scanning electron microscopy), or immunohistochemistry-stained histology slides, or immunofluorescence were excluded from the study. Studies not focusing on oral dysplasia grading and diagnosis, e.g., to discriminate OSCC from normal epithelial tissue were also excluded.
Results: A total of 24 studies were included in this review. Nineteen studies utilized deep learning (DL) convolutional neural networks for histopathological OED analysis, and 4 used machine learning (ML) models. Studies were summarized by AI method, main study outcomes, predictive value for malignant transformation, strengths, and limitations.
Conclusion: ML/DL studies for OED grading and prediction of malignant transformation are emerging as promising adjunctive tools in the field of digital pathology. These adjunctive objective tools can ultimately aid the pathologist in more accurate diagnosis and prognosis prediction. However, further supportive studies that focus on generalization, explainable decisions, and prognosis prediction are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087425 | PMC |
http://dx.doi.org/10.1007/s12105-024-01643-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!