A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitonuclear interactions impact aerobic metabolism in hybrids and may explain mitonuclear discordance in young, naturally hybridizing bird lineages. | LitMetric

Understanding genetic incompatibilities and genetic introgression between incipient species are major goals in evolutionary biology. Mitochondrial genes evolve rapidly and exist in dense gene networks with coevolved nuclear genes, suggesting that mitochondrial respiration may be particularly susceptible to disruption in hybrid organisms. Mitonuclear interactions have been demonstrated to contribute to hybrid dysfunction between deeply divergent taxa crossed in the laboratory, but there are few empirical examples of mitonuclear interactions between younger lineages that naturally hybridize. Here, we use controlled hybrid crosses and high-resolution respirometry to provide the first experimental evidence in a bird that inter-lineage mitonuclear interactions impact mitochondrial aerobic metabolism. Specifically, respiration capacity of the two mitodiscordant backcrosses (with mismatched mitonuclear combinations) differs from one another, although they do not differ significantly from the parental groups or mitoconcordant backcrosses as we would expect of mitonuclear disruptions. In the wild hybrid zone between these subspecies, the mitochondrial cline centre is shifted west of the nuclear cline centre, which is consistent with the direction of our experimental results. Our results therefore demonstrate asymmetric mitonuclear interactions that impact the capacity of cellular mitochondrial respiration and may help to explain the geographic discordance between mitochondrial and nuclear genomes observed in the wild.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17374DOI Listing

Publication Analysis

Top Keywords

mitonuclear interactions
20
interactions impact
12
mitonuclear
8
aerobic metabolism
8
mitochondrial respiration
8
cline centre
8
mitochondrial
6
impact aerobic
4
metabolism hybrids
4
hybrids explain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!