Citrate-coated electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) have been successfully tested as magnetic resonance angiography (MRA) contrast agents and are promising tools for molecular imaging of atherosclerosis. Their repeated use in the background of pre-existing hyperlipidemia and atherosclerosis has not yet been studied. This study aimed to investigate the effect of multiple intravenous injections of VSOPs in atherosclerotic mice. Taurine-formulated VSOPs (VSOP-T) were repeatedly intravenously injected at 100 µmol Fe/kg in apolipoprotein E-deficient (ApoE KO) mice with diet-induced atherosclerosis. Angiographic imaging was carried out by in vivo MRI. Magnetic particle spectrometry was used to detect tissue VSOP content, and tissue iron content was quantified photometrically. Pathological changes in organs, atherosclerotic plaque development, and expression of hepatic iron-related proteins were evaluated. VSOP-T enabled the angiographic imaging of heart and blood vessels with a blood half-life of one hour. Repeated intravenous injection led to VSOP deposition and iron accumulation in the liver and spleen without affecting liver and spleen pathology, expression of hepatic iron metabolism proteins, serum lipids, or atherosclerotic lesion formation. Repeated injections of VSOP-T doses sufficient for MRA analyses had no significant effects on plaque burden, steatohepatitis, and iron homeostasis in atherosclerotic mice. These findings underscore the safety of VSOP-T and support its further development as a contrast agent and molecular imaging tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085881 | PMC |
http://dx.doi.org/10.3390/nano14090773 | DOI Listing |
Breast J
January 2025
Gynecology Department, Coimbra University Hospital Center, Coimbra, Portugal.
Establishing an accurate prognosis for women diagnosed with breast cancer (BC) is extremely challenging. Axillary lymph node (ALN) evaluation is considered of major prognostic value. The one-step nucleic acid amplification (OSNA) assay is currently used for assessing axillary sentinel lymph node (SLN) status in BC.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow PL35-310, Poland.
In this work, we are showing the results of the X- and Q-band electron magnetic resonance measurements of ultra-small ZnMnFeO nanoparticles ( 8 nm) with a very narrow size distribution. The chosen synthetic route allows for precise structural modifications with a broad concentration range ( = 0, 0.2, 0.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Radiology, Campus Virchow-Klinikum (CVK), Charité-Universitätsmedizin Berlin, Berlin 13353, Germany.
Very small superparamagnetic iron oxide nanoparticles (VSOPs) show diagnostic value in multiple diseases as a promising MRI contrast agent. Macrophages predominantly ingest VSOPs, but the mechanism remains unclear. This study identifies differences in VSOP uptake between pro-inflammatory M1 and anti-inflammatory M2 macrophages and explores the role of the pericellular glycocalyx.
View Article and Find Full Text PDFHeliyon
November 2024
Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India.
In the present study, Coconut Husk Biochar (CHB) was synthesize from widely available, locally sourced agro waste, coconut husk and characterized using different techniques like scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). CHB was tested for its ability to adsorb crystal violet (CV), a commonly used cationic dye, from water. It was capable of adsorbing more than 98 % of CV from water and follows Freundlich isotherm model with pseudo second order kinetics though the overall process was unfavourable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!