Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085593PMC
http://dx.doi.org/10.3390/nano14090766DOI Listing

Publication Analysis

Top Keywords

composite beads
8
beads embedded
8
river water
8
green
5
biopolymer meets
4
meets nanoclay
4
nanoclay rational
4
rational fabrication
4
fabrication superb
4
adsorption
4

Similar Publications

In this work, a novel adsorbent from alginate, zeolite and biochar has been made through one-pot synthesis route with highly compatible Sodium Dodecyl Sulphate (SDS) modification. This gave ultra-high Ni removal of 1205 mg/g in batch mode while treating almost 200 L of solution in column mode with 1171 mg/g capacity, which are the one of the highest reported values. The Point of Zero Charge (pH) for Ni removal was determined to be 5, with optimal removal efficiency being observed at pH 7, indicating a negative surface charge of the ABPC beads, which aligns with the anionic charge provided by SDS enhancement.

View Article and Find Full Text PDF

Mercury pollution control and Marphysa sanguinea bio-response in active-capped sediment with calcium alginate/activated carbon composite.

J Hazard Mater

January 2025

Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106319, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106319, Taiwan. Electronic address:

Anthropogenic and industrial activities have released large amounts of mercury (Hg) into the hydrosphere. Hg ultimately deposits in sediments and could be re-released into the water environment, threatening the ecological system. Active capping is considered a suitable remediation method due to its relatively low cost and in-situ decontamination feasibility.

View Article and Find Full Text PDF

Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca stabilized ETL biocatalysts while phosphate destabilized them.

View Article and Find Full Text PDF

The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).

View Article and Find Full Text PDF

Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!