We recently found that polyvinylpyrrolidone (PVP)-protected metal nanoparticles dispersed in water/butanol mixture spontaneously float to the air/water interface and form two-dimensional assemblies due to classical surface excess theory and Rayleigh-Bénard-Marangoni convection induced by butanol evaporation. In this study, we found that by leveraging this principle, a unique structure is formed where hetero gold nanospheres (AuNPs)/gold nanostars (AuNSs) complexes are dispersed within AuNP two-dimensional assemblies, obtained from a mixture of polyvinylpyrrolidone-protected AuNPs and AuNSs that interact electrostatically with the AuNPs. These structures were believed to form as a result of AuNPs/AuNSs complexes formed in the water/butanol mixture floating to the air/water interface and being incorporated into the growth of AuNP two-dimensional assemblies. These structures were obtained by optimizing the amount of mixed AuNSs, with excessive addition resulting in the formation of random three-dimensional network structures. The AuNP assemblies dispersed with AuNPs/AuNSs complexes exhibited significantly higher Raman (surface-enhanced resonance Raman scattering: SERRS) activity compared to simple AuNP assemblies, while the three-dimensional network structure did not show significant SERRS activity enhancement. These results demonstrate the excellent SERRS activity of AuNP two-dimensional assemblies dispersed with hetero AuNPs/AuNSs complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085563 | PMC |
http://dx.doi.org/10.3390/nano14090764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!