The Effectiveness Mechanisms of Carbon Nanotubes (CNTs) as Reinforcements for Magnesium-Based Composites for Biomedical Applications: A Review.

Nanomaterials (Basel)

Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iaşi, Romania.

Published: April 2024

As a smart implant, magnesium (Mg) is highly biocompatible and non-toxic. In addition, the elastic modulus of Mg relative to other biodegradable metals (iron and zinc) is close to the elastic modulus of natural bone, making Mg an attractive alternative to hard tissues. However, high corrosion rates and low strength under load relative to bone are some challenges for the widespread use of Mg in orthopedics. Composite fabrication has proven to be an excellent way to improve the mechanical performance and corrosion control of Mg. As a result, their composites emerge as an innovative biodegradable material. Carbon nanotubes (CNTs) have superb properties like low density, high tensile strength, high strength-to-volume ratio, high thermal conductivity, and relatively good antibacterial properties. Therefore, using CNTs as reinforcements for the Mg matrix has been proposed as an essential option. However, the lack of understanding of the mechanisms of effectiveness in mechanical, corrosion, antibacterial, and cellular fields through the presence of CNTs as Mg matrix reinforcements is a challenge for their application. This review focuses on recent findings on Mg/CNT composites fabricated for biological applications. The literature mentions effective mechanisms for mechanical, corrosion, antimicrobial, and cellular domains with the presence of CNTs as reinforcements for Mg-based nanobiocomposites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085746PMC
http://dx.doi.org/10.3390/nano14090756DOI Listing

Publication Analysis

Top Keywords

cnts reinforcements
12
carbon nanotubes
8
nanotubes cnts
8
elastic modulus
8
mechanical corrosion
8
presence cnts
8
cnts
5
effectiveness mechanisms
4
mechanisms carbon
4
reinforcements
4

Similar Publications

In-situ growing carbon nanotubes reinforced highly heat dissipative three-dimensional aluminum framework composites.

J Colloid Interface Sci

December 2024

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

The demand for lightweight heat dissipation design in highly miniaturized and portable electronic devices with high thermal density is becoming increasingly urgent. Herein, highly thermal conductive carbon nanotubes (CNTs) reinforced aluminum foam composites were prepared by catalyst chemical bath and subsequent in-situ growth approach. The dense CNTs show the intertwined structure features and construct high-speed channels near the surface of the skeletons for efficient thermal conduction, promoting the transport efficiency of heat flow.

View Article and Find Full Text PDF

New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications.

View Article and Find Full Text PDF

Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting.

Materials (Basel)

November 2024

Eco-Friendly Circular Advanced Materials and Additive Manufacturing (ECAM) Lab, Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada.

The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs)-reinforced copper-based composites (CNT/Cu) have been extensively investigated due to their exceptional theoretical electrical, thermal, and mechanical properties. However, the actual performance of these composites has consistently fallen short of theoretical expectations. This discrepancy primarily arises from the inability to achieve direct chemical bonding between copper and carbon nanotubes or to alloy them effectively.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the impact of different carbon nanostructure reinforcements and nitinol shape memory alloy (SMA) wire on the vibration behavior of a five-layer sandwich plate with a foam core, aiming to optimize stiffness and weight for sensitive industries.
  • It highlights how various reinforcements like carbon nanotubes, nanorods, and graphene platelets can significantly enhance the mechanical properties, with graphene showing the most substantial improvement in Young's modulus.
  • The research also introduces a novel construction method for the five-layer model using a vacuum pump, offering a more efficient alternative to traditional manual methods and facilitating a thorough experimental examination of its properties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!