The composites of heteropolyacids (HPW, HPMo) incorporated into amine-functionalized silica materials were used for the first time as heterogeneous catalysts in the valorization of glycerol (a major waste from the biodiesel industry) through acetalization reaction with acetone. The polyoxotungstate catalyst HPW@SBA-15 exhibited higher catalytic efficiency than the phosphomolybdate, achieving 97% conversion and 97% of solketal selectivity, after 60 min at 25 °C, or 91% glycerol conversion and the same selectivity, after 5 min, performing the reaction at 60 °C. A correlation between catalytic performance and catalyst acidity is presented here. Furthermore, the stability of the solid catalyst was investigated and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085283 | PMC |
http://dx.doi.org/10.3390/nano14090733 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Karlsruhe Institute of Technology KIT, Institute for Chemical Technology and Polymer Chemistry, Kaiserstr. 12, Fakultät für Chemie, 76131, Karlsruhe, GERMANY.
In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.
Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Catalysis, Zhejiang University, Hangzhou 310027, China.
Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.
View Article and Find Full Text PDFJ Environ Manage
January 2025
GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium.
Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!