AI Article Synopsis

  • Research on the long-term effects of postovulatory oocyte aging (POA) on offspring is limited, especially regarding oxidative stress (OS) and mitochondrial damage.
  • In a study involving mouse oocytes, both in vivo-aged and in vitro-aged oocytes showed increased anxiety-like behaviors and impaired learning/memory in their first-generation (F1) offspring when exposed to low antioxidant conditions.
  • While POA led to OS and mitochondrial dysfunction in the F1 generation, it did not influence the behavior of second-generation (F2) offspring, suggesting that POA is a significant factor in causing psychological issues in the F1 generation, with potential for antioxidant therapies to reduce these effects.

Article Abstract

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083947PMC
http://dx.doi.org/10.3390/cells13090758DOI Listing

Publication Analysis

Top Keywords

poa offspring
12
offspring
11
mouse oocytes
8
causing oxidative
8
oxidative stress
8
anxiety-like behavior
8
oocytes
7
poa
5
postovulatory aging
4
aging mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!