Improving the catalytic activity and durability of platinum-based alloy catalysts remains a formidable challenge in the context of renewable energy electrolysis applications. Herein, a facile and rapid photochemical deposition strategy for the synthesis of gold single atoms (Au SAs) anchored on N-doped carbon is presented. These Au SAs serve as a charge redistribution support for Pt-Ni alloy nanoparticles (PtNi/Au-NDC), creating an extended electron-donating interface with Pt-Ni alloy sites. Consequently, the PtNi/Au-NDC hybrid catalyst manifests exceptional catalytic performance and durability in both the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) under acidic conditions. Specifically, in ORR, it exhibits a half-wave potential (0.92 V vs RHE), with a mass activity 20.4 times superior to Pt/C at 0.9 V. In HER, PtNi/Au-NDC demonstrates a notably reduced overpotential of 19.1 mV vs RHE at 10 mA cm and a mass activity 38 times higher than Pt/C (at 0.25 mV). Furthermore, this hybrid catalyst displays outstanding durability, with only an 8.0 mV decay observed for ORR and a 6.9 mV decay for HER after 10 000 cycles. Theoretical calculations provide insight into the mechanism, demonstrating that isolated Au sites effectively modulate the electronic structure of Pt-Ni alloy sites, facilitating intermediate adsorption and enhancing reaction kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202311971DOI Listing

Publication Analysis

Top Keywords

pt-ni alloy
16
electronic structure
8
gold single
8
single atoms
8
n-doped carbon
8
oxygen reduction
8
reduction reaction
8
hydrogen evolution
8
evolution reaction
8
alloy sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!