AI Article Synopsis

  • Hydroquinone (HQ) is linked to benzene-induced hematotoxicity, but the specific proteomic mechanisms are still not fully understood.
  • In a study, K562 cells were treated with HQ, uncovering 187 upregulated and 279 downregulated proteins involved in various biological pathways, including immune response and cell metabolism.
  • Six key proteins (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) were identified as significant players in erythroid differentiation-related pathways, highlighting their potential as biomarkers for HQ-induced hematotoxicity.

Article Abstract

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet.

Methods: In this study, we treated K562 cells with 40 μmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks.

Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity.

Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2024.039DOI Listing

Publication Analysis

Top Keywords

k562 cells
12
hq-induced hematotoxicity
8
proteomics study
4
study benzene
4
benzene metabolite
4
metabolite hydroquinone
4
hydroquinone induced
4
hematotoxicity
4
induced hematotoxicity
4
hematotoxicity k562
4

Similar Publications

Background: Chalcones have been described in the literature as promising antineoplastic compounds.

Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).

Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.

View Article and Find Full Text PDF

Objective: To investigate the reversal effect and mechanism of asiatic acid (AA) on multidrug resistance in human adriamycin (ADR) chronic myeloid leukemia K562/ADR cells.

Methods: CCK-8 assay was used to detect the resistance of K562 cells and K562/ADR cells to ADR. CCK-8 assay was used to detect the effect of AA on K562/ADR cell viability and adriamycin sensitization.

View Article and Find Full Text PDF

Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway.

Biochim Biophys Acta Gen Subj

December 2024

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Article Synopsis
  • Multidrug resistance (MDR) complicates the development of effective chemotherapy, with previous research showing that GnT-III expression decreases chemoresistance and that fucosylation is heightened in resistant cell models.
  • Using advanced techniques like CRISPR/Cas9, this study created a FUT4 knockout cell line to assess how fucosylation affects drug resistance by analyzing various gene expressions and drug response.
  • The findings revealed that knocking out FUT4 lowered P-glycoprotein levels and enhanced drug sensitivity, indicating that FUT4 plays a pivotal role in regulating P-glycoprotein expression through the NF-κB signaling pathway, positioning it as a potential target for overcoming MDR in cancer treatment.
View Article and Find Full Text PDF

This comprehensive study focused on evaluating and selecting seven distinct commercial membranes to develop BTESE/PA membranes. This method effectively facilitated the extraction of cynaroside from the complex composition of peony seed meal. We subsequently conducted a thorough investigation into its biological properties.

View Article and Find Full Text PDF

Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!